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ABSTRACT  

Recent work in economic geography posits that regional diversification into related and 

complex knowledge fields boosts innovative output and economic development. While the 

theoretical arguments on the importance of complex knowledge creation for regional 

development are widely accepted and scholars have started using measures of knowledge 

complexity to inform policy decisions in the context of the EU’s smart specialization 

programme, the application of the theoretical concept to regional development policy raises 

a number of questions: First, what concept of knowledge complexity should be employed for 

policy analysis? Second, how is complexity operationalized empirically? Third, which 

alternative empirical operationalization of knowledge complexity should be used for policy 

purposes? This paper offers the first systematic comparison of three theoretically sound 

measures of knowledge complexity and related 48 empirical operationalizations of those 

three complexity indices based on regional patent data from 1996-2017 for a consistent set 

of 197 European metropolitan regions. The results show that the choice of complexity 

measure and emprical operationalization produces widely varying results and that more 

theoretical and conceptual work on knowledge complexity is required before it can be 

employed widely for policy purposes, and in particular, to inform smart specialization policies.  

 

 

 

 

 

 

 

 

Keywords: Knowledge complexity; economic complexity index; economic fitness complexity 

index; structural diversity index; smart specialization policies;  

  



Page 3 of 42 

INTRODUCTION 

Smart specialization policies have played a critical role in the EU’s Europe 2020 strategy built 

around smart, sustainable and inclusive growth (Balland and Rigby, 2017; Balland and 

Boschma, 2019a; Balland et al., 2019; Rigby et al., 2022) and will continue to play an important 

guiding role for funding allocation in the next EU funding cycle (2021-2027) in the form of the 

“Smart Specialization Strategies for Sustainability (S4)” (Smart Specialisation Platform, 

accessed 29.07.22). Smart specialization strategies refer to “the capacity of an economic 

system (a region for example) to generate new specialities through the discovery of new 

domains of opportunity and the local concentration and agglomeration of resources and 

competences in these domains” (Foray, 2014, p. 1). Focusing and building on region-specific 

capabilities addresses two major weaknesses of the European economy, national level 

fragmentation of public research systems and duplication of knowledge bases (Foray, 2014; 

Hassink and Gong, 2019).  

 

The fuzziness of the concept of smart specialization caused problems for actors to implement 

smart specialization policies in the early phases (McCann and Ortega-Argilés, 2015; Capello 

and Kroll, 2016; Hassink and Gong, 2019), made it difficult for researchers and consultants to 

identify the direction of diversification in a systemic way as well as to evaluate the success or 

failure of smart specialization policies beyond anecdotal evidence (Balland and Rigby, 2017; 

Balland and Boschma, 2019b; Balland et al., 2019; Trippl et al., 2020; Rigby et al., 2022). In 

order to reduce the complexity of real world cases to a manageable number of indicators 

linking a region’s capabilities with promising potential diversification strategies, Balland et al. 

(2019) combine the concept of “relatedness” (Frenken et al., 2007; Hausmann et al., 2007; 

Hidalgo et al., 2007; Hidalgo and Hausmann, 2009; Neffke et al., 2011; Boschma et al., 2013, 

2015; Rigby, 2015; Essletzbichler, 2015; Boschma, 2017; Kogler et al., 2017) with the concept 

of “complexity” (Fleming and Sorenson, 2001; Hidalgo and Hausmann, 2009; Tacchella et al., 

2012; Balland and Rigby, 2017; Broekel, 2019; Balland et al., 2020; Mewes and Broekel, 2020; 

Hidalgo, 2021; Pintar and Scherngell, 2021). As the policy focus and the large majority of work 

in economic geography is on the role of technological change for (smart) economic growth, 

we restrict our analysis to knowledge complexity (Foray, 2014; Rigby, 2015; Kogler et al., 2017; 
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Balland and Boschma, 2019b; Balland et al., 2019; Pintar and Scherngell, 2021; Rigby et al., 

2022). 

 

According to Balland et al. (2019), a smart specialization strategy is one of “related” 

diversification into complex knowledge domains because this strategy is supposed to lower 

investment risk and yield high benefits. The strategy is considered low risk, because the 

relatedness of new technologies to the existing regional technological portfolio reduces the 

risk of failure (loss of investment in new technology creation) (Rigby, 2015; Kogler et al., 2017), 

generates higher localized spillover rates between firms and research institutions and thus, 

higher expected regional productivity and growth in “smart” regions (Jaffe et al., 1993; 

Maskell and Malmberg, 1999). The strategy is supposed to generate medium- to long run 

benefits as complex knowledge is more difficult to imitate such that companies can extract 

monopoly rents for an extended period of time. The diversification into complex knowledge 

domain is the source of (technological) “strong competition” not easily eroded by (price) 

“weak competition” (Walker and Storper, 1989), setting regions on robust paths of economic 

development. While the theoretical arguments linking smart specialization to relatedness and 

complexity are sound and researchers seem to converge on a common standard to measure 

relatedness, a number of competing measures of knowledge complexity are proposed in the 

literature (Hidalgo and Hausmann, 2009; Tacchella et al., 2012; Broekel, 2019). Hence, if 

knowledge complexity is identified as a key variable to inform public funding decisions, then 

it is important to know if different complexity measures lead to similar (ideally identical) policy 

conclusions. Otherwise, more work is required to determine the conceptual merits of different 

knowledge complexity measures supposed to inform policies backed by 67 billion EUR during 

the 2014-2020 funding cycle (Gomez Prieto et al., 2019; Deegan et al., 2021).   

 

In order to address this concern, the paper offers a first systematic comparison of three 

different knowledge complexity measures based on Hidalgo and Hausmann (2009), Tacchella 

et al. (2012) and Broekel (2019) to evaluate patenting activity in a consistent set of 197 

European metropolitan regions over the period 1996-20171. The empirical operationalization 

 
1 While Broekel (2017) compared the technological complexity index based on the Hidalgo and Hausmann (2009) 
approach with the newly introduced structural diversity index (SDI) this paper focuses on regional knowledge 
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of knowledge complexity requires researchers to make choices on a number of key 

parameters (technology classification; rules for establishing substantive presence of 

technology classes in a region; regional allocation of knowledge production according to 

fractional or full patent count) that result in 48 different complexity values for each 

metropolitan region and for each year (see Figure 1). As all of those 48 measures can be 

justified on theoretical and conceptual grounds, we examine empirically the stability of 

measures over time, the consistency of results between measures, and the relationship of 

these measures to regional medium to long-term technological and economic change. The 

results should aid researchers and policy makers in their choice of complexity measures and 

illustrate that the implementation choices made have non-trivial consequences for regional 

complexity rankings and potentially, the development of smart specialization policies.  

 

The paper is structured as follows. The next section reviews briefly the three complexity 

measures and discusses their operationalization. The third section introduces the dataset and 

sample on which the comparative analysis is based. Then, the fourth section summarizes the 

key choices to be made to calculate empirically regional knowledge complexity. Section five 

evaluates empirically the alternative complexity 48 different alternatives of calculating 

regional complexity values and the sixth section concludes the paper.  

 

CONCEPTUAL FOUNDATION AND MEASURES OF KNOWLEDGE COMPLEXITY 

 

Regional diversification into new specializations is smart if additional knowledge is added to 

the regional portfolio and if this knowledge is of qualitatively high value. Knowledge is of high 

value if it is tacit, i.e. difficult to codify, imitate and transfer between people and places 

(Polanyi, 1958, 1966; Kogut and Zander, 1992; Nonaka and Takeuchi, 1995; Lawson and 

Lorenz, 1999; Maskell and Malmberg, 1999; Asheim and Gertler, 2005). Complexity is a critical 

 
complexity. The recent set of working papers by Nomaler and Verspagen (2022b, 2022a) also compare popular 
(knowledge) complexity measures and introduce their own alternative measure, and while they focus on the 
predictive capabilities of the differing approaches and establish a “supervised (machine) learning” algorithm (in 
contrast to the “unsupervised” approaches we highlight), the main conclusions they draw from their work are in 
line with ours. 
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component of tacit knowledge (Kogut and Zander, 1993). In turn, the creation of complex 

knowledge forms an integral component of smart specialization policies (Balland and Rigby, 

2017; Deegan et al., 2021; Rigby et al., 2022).  

 

Simon (1962) argues that complexity is a function of the number of components and the 

interdependence of these components. It requires information about the distinguishable 

components (component diversity) that make up a new technology or product as well as the 

difficulty of combining those original components (component linkage structure). The two 

defining characteristics, component linkage structure and component diversity offer two 

entry points into developing empirical complexity measures. Following the first path, Fleming 

and Sorenson (2001) focus on links between components to develop a technology complexity 

measure. Empirically, they derive the complexity of a patent by measuring the difficulty of 

combining different technology subclasses on patents. Following the second path, Hidalgo and 

Hausmann (2009) in their analysis of countries’ commodity export baskets, offer a complexity 

measure “that reflects the difficulty of mastering the capabilities required to export a 

particular commodity (indexed by the rarity of exports of a given type), the diversity of 

capabilities held by different countries and the relatedness between them” (Balland et al., 

2019, p. 1257). 

 

These two general approaches to measure complexity have been applied and modified to 

measure knowledge complexity: First, following Fleming and Sorenson (2001) and their focus 

on the component linkage structure, Broekel (2019) developed the structural diversity 

measure (SDI) that in turn is based on Emmert-Streib and Dehmer (2012). Second, following 

the “component diversity route”, Balland and Rigby (2017) develop a knowledge complexity 

index based on Hidalgo and Hausmann’s economic complexity index (ECI) (2009) while 

Tacchella et al. (2012) provide a modification of the ECI, the nonlinear, economic fitness 

complexity index of (EFC). 
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The economic complexity index (ECI) and economic fitness complexity index (EFC) 

 

The ECI and EFC are based on the assumption that complexity is given by the properties of 

geographical ubiquity and technological (product) diversity. Technologies that are less 

ubiquitous, i.e. produced in a smaller number of locations are expected to be more complex, 

locations (cities, regions, states) that produce a large diversity of technologies are seen as 

more technologically advanced, able to produce complex (as well as less complex) technology. 

Applying the “method of reflections” (Hidalgo and Hausmann, 2009), an iterative process 

where information on technological ubiquity is used to calculate locational diversity and 

information on locational diversity is used to calculate technological ubiquity, produces a set 

of ECIs for each location and technology. Locations that produce a relatively large number of 

rare technologies exhibit a relatively high ECI (Balland and Rigby, 2017; Pintar and Scherngell, 

2021; Rigby et al., 2022). The formal presentation of the two complexity measures ECI and 

EFC follows next.  

 

At the center of both measures is the location-by-knowledge-field matrix 𝑀𝑖𝑘, representing 

the portfolio of knowledge production of all locations as it connects each location 𝑖 = (1…𝑁) 

with the knowledge field (activity) 𝑘 = (1…𝐾) in which it is specialized in. In network science 

jargon, M forms a bipartite network with two separate sets of nodes (N and K) where only 

nodes from different sets can be linked. Location i is connected to knowledge field k in the 

knowledge production network if, and only if, 𝑀𝑖𝑘 > 0. Further, location i is considered to be 

specialized in knowledge field k when 𝑀𝑖𝑘 ≥  1. Notice that 𝑀𝑖𝑘can include discrete values (1 

if a location i is specialized in a certain knowledge field k and 0 otherwise) or continuous 

values.  

 

The location-by-knowledge-field matrix 𝑀𝑖𝑘 is the sole input for the ECI and the EFC. The 

diversity in knowledge production of location i, 𝑑𝑖
0, is given simply by the number of 

specializations of location i in knowledge fields k. From a network science perspective, it is 

equal to the degree centrality of node i in network M. Ubiquity of knowledge field k, 𝑢𝑘
0 is 

understood as the number of locations which are specialized in k, or as the degree centrality 
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of node k in network M. The “method of reflections” introduced by Hidalgo and Hausmann 

(2009) takes the matrix M as input and produces estimates of ECI for locations and activities. 

This is done via a self-referential algorithm (1) that iteratively refines diversity and ubiquity 

measures to approximate location and activity complexity (𝑑𝑖
𝑛; 𝑢𝑘

𝑛) where n refers to the 

number of iterations: 

{
 
 

 
 𝑑𝑖

𝑛 = 
1

𝑑𝑖
0∑𝑀𝑖𝑘𝑢𝑘

(𝑛−1)

𝑘

𝑢𝑘
𝑛 =

1

𝑢𝑘
0∑𝑀𝑖𝑘𝑑𝑖

(𝑛−1)

𝑖

(1) 

This algorithm yields generalized measures of diversity and ubiquity where each iteration 

builds on information from previous iterations. In our application to geographical knowledge 

production, each even iteration of 𝑑𝑖
𝑛 produces an estimate of locational knowledge 

complexity as the average of (generalized) ubiquity of knowledge fields location i is specialized 

in. Conversely, each uneven iteration of 𝑢𝑘
𝑛 yields an estimate of knowledge field complexity 

as the average (generalized) diversity of regions that specialize in knowledge field k.2  

 

Caldarelli et al. (2012) established a reformulation of the “method of reflections” as a fixpoint 

problem that does not need to be solved iteratively but can be solved analytically. Again, 

matrix M enters as the sole input. Location complexity is approximated by the eigenvector 

�̃�[2] associated with the second largest eigenvalue of matrix �̃� = �̂� �̂�′. Here, the location-

by-knowledge-field matrix M and its transpose is row-standardized to produce �̂� and �̂�′. The 

location-location row-stochastic square matrix �̃� is populated with estimates of weighted 

similarities between locations based on their (common) knowledge production activities. In 

line with most recent studies, we adopt this approach and define the ECI of locations as equal 

to �̃�[2].3  

 

 
2 In cases that M is not discretized to only signal specializations (e.g. when we measure specialization with the 
NRCA method, see Section0) but is populated by real values, the algorithms uses the full information of the 
knowledge production network, including information about the degree of specialization. For further details on 
the derivation and interpretation of the “method of reflections” see (Hidalgo and Hausmann, 2009; Caldarelli et 
al., 2012; Mariani et al., 2015; Balland and Rigby, 2017).  
3 The complexity of activities can be estimated reversing the order of matrix multiplication �̃� = �̂�′�̂� and 

calculating the eigenvector associated with the second largest eigenvalue of �̃�, �̃�[2]. 
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Tacchella et al. (2012) raise conceptual and practical concerns with the Hidalgo and Hausmann 

(2009) method. While they agree with the idea that locational complexity can be represented 

through the diversity of “ubiquity-weighted” products they propose that “the complexity of a 

product cannot be defined as the average of the fitnesses of the countries producing it” 

(Tacchella et al., 2012, p. 1) because only products produced by highly competitive countries 

contain information about the complexity of a product. Thus, they recommend a non-linear 

weighting of the complexity of the productive system of the producers (fitness) to determine 

the complexity of a particular product such that the complexity of a product produced by non-

competitive countries is considered low while the complexity of products produced by 

competitive countries only is considered high. While a similar algorithm to the “method of 

reflections” is maintained, the non-linear weighting of countries determining product 

complexity differs from Hidalgo and Hausmann (2009) where countries enter with equal 

weights. Even though the EFC, as well as the ECI, was originally introduced with country level 

export data (Tacchella et al., 2012; Cristelli et al., 2015), recent work has utilized the index also 

in the context of geographical knowledge production. 

 

The fitness complexity of location i and the activity complexity of k can be defined as follows 

(Tacchella et al., 2012): 

{
 
 

 
             𝐹�̃�

𝑛
= ∑ 𝑀𝑖𝑘𝑄𝑘

(𝑛−1)

𝑘

𝑄�̃�
𝑛
=

1

∑ 𝑀𝑖𝑘
1
𝐹𝑖
𝑛𝑖

      

{
 
 

 
       𝐹𝑖

𝑛 = 
𝐹�̃�
𝑛

〈𝐹�̃�
𝑛
〉𝑖

       𝑄𝑘
𝑛 = 

𝑄�̃�
𝑛

〈𝑄�̃�
𝑛
〉𝑘

(2) 

where 〈𝐹�̃�
𝑛
〉𝑖 refers to the arithmetic mean of fitness complexity values of all N locations and 

〈𝑄�̃�
𝑛
〉𝑘 accordingly to average complexity values of knowledge fields K. The algorithm starts 

with initial condition 𝑄𝑘
0 = 1  ∀ 𝑘. Each iteration of 𝐹�̃�

𝑛
is estimated as the sum of knowledge 

fields a location is specialized in, weighted by their complexity 𝑄𝑘
(𝑛−1). The non-linear 

relationship between knowledge and location is introduced in the second equation. Here, the 

complexity of activity k is assumed to be inversely related to the number of locations that are 

able to specialize in it and locations are weighted by the inverse of their average fitness value. 

This assures that an activity is considered complex only if very few locations are specialized in 
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it and if these locations have relatively high complexity scores. The fixed point of (2) yields 

estimates of locational fitness complexity and activity complexity. 

 

The structural diversity index (SDI) 

 

While the reliance on spatial ubiquity to determine knowledge complexity is reasonable it is 

not unproblematic as the geographic distribution of knowledge production can have many 

different explanations independent of knowledge complexity (e.g. institutional differences 

including innovation policies, cultural differences, attitudes towards entrepreneurship and 

risk-taking, etc.). Furthermore, it poses a potential endogeneity problem for spatial research 

and the choice of geographic units may influence the results (Broekel, 2019). Hence, Broekel 

(2019) suggests a different knowledge complexity measure extracted from the topological 

structure of knowledge networks and independent of the geographic distribution of 

knowledge production. The structural diversity index (SDI) developed by Broekel (2019) based 

on Fleming and Sorenson (2001), Hargadon (2003) and Emmert-Streib and Dehmer (2012) 

interprets technology as systems of interrelated components where the complexity of 

knowledge fields is determined by the complexity of the combinations of subcomponents that 

make up a knowledge field. This complexity of combinations is proxied by the structural 

diversity of the combinatorial network of subcomponents where structural diversity is 

understood as the diversity of network topologies a network contains (Emmert-Streib and 

Dehmer, 2012; Broekel, 2019). Networks comprised of different topologies require different 

amount of information to describe their structure (Broekel, 2019). For example, a simple star-

like network can be fully described when the total number of nodes and the central node is 

known. Conversely, a so-called small-world network needs much more information to be fully 

defined as it may combine multiple different network topologies (e.g. stars, triangles, lattices).  

 

For the development of the SDI , Broekel (2019) adapts from who developed the so-called 

network diversity score (NDS) index (Emmert-Streib and Dehmer, 2012) to distinguish 

“ordered”, “complex” and “random” networks. In this context, ordered networks represent 

the simplest, complex intermediate and random the most advanced networks in terms of their 
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structure. The NDS is based on multiple network metrics that are combined in a way that was 

established using extensive numerical simulations to best distinguish the three types of 

network structures.  

𝑖𝑁𝐷𝑆(𝐺𝑘) =
𝛼𝑚𝑜𝑑𝑢𝑙𝑒  𝑟𝑚𝑜𝑡𝑖𝑓
𝑣𝑚𝑜𝑑𝑢𝑙𝑒  𝑣𝜆

(3) 

The individual network diversity score 𝑖𝑁𝐷𝑆(𝐺𝑘) of the combinatorial network 𝐺𝑘 is given by 

(3). The first term refers to the share of modules, 𝛼𝑚𝑜𝑑𝑢𝑙𝑒 = 
M

𝑉
, with M being the number of 

modules and 𝑉 equal to the number of nodes (vertices) of the network. Modules are small, 

densely connected subgraphs of a network and signal a certain organizational principle of said 

network. The variable 𝑟𝑚𝑜𝑡𝑖𝑓
4 gives the ratio of the number of motifs of size three and four, 

𝑟𝑚𝑜𝑡𝑖𝑓 = 
𝑚𝑜𝑡𝑖𝑓(3)

𝑚𝑜𝑡𝑖𝑓(4)
. Motifs are small, connected subgraphs of a certain defined structure. The 

variables 𝑣𝑚𝑜𝑑𝑢𝑙𝑒  and 𝑣𝜆 serve as a standardization and are interpreted like a coefficient of 

variation. Here, 𝑣𝑚𝑜𝑑𝑢𝑙𝑒 = 
𝑣𝑎𝑟(𝑚)

𝑚𝑒𝑎𝑛(𝑚)
 approximates the variability in module sizes 𝑚 and 𝑣𝜆 =

 
𝑣𝑎𝑟(Λ(𝐿))

𝑚𝑒𝑎𝑛(Λ(𝐿))
 the variability of the Laplacian matrix L’s eigenvalues Λ(𝐿).  

 

As it may be the case that a network shows a structural diversity according to an ordered, 

complex or random network purely by chance, Emmert-Streib and Dehmer (2012) define the 

NDS for the whole population of networks 𝐺𝑃𝑘 to which 𝐺𝑘 belongs. While the population of 

networks is not observable, the NDS of 𝐺𝑃𝑘 can be approximated by drawing independent 

samples S from 𝐺𝑘 and taking the average of their iNDS.  

𝑁𝐷𝑆𝑘({𝐺𝑘}
𝑆|𝐺𝑃𝑘) =

1

𝑆
 ∑ 𝑖𝑁𝐷𝑆(𝐺𝑘)

𝑆

𝐺𝑘𝜖 𝐺𝑃𝑘

 (4) 

We follow Broekel (2019) in transforming the NDS for easier interpretation: 

𝑆𝐷𝐼𝑘 = −1 log(𝑁𝐷𝑆𝑘) (5) 

 
4 For computational reasons, Broekel (2019) uses the ratio of graphlets of size three and four instead of 𝑟𝑚𝑜𝑡𝑖𝑓 .  
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Using this transformation, large values of 𝑆𝐷𝐼𝑘 indicate random networks (complex 

knowledge fields), medium values complex networks (medium complex knowledge fields) and 

low values ordered network (low complex knowledge fields).  

 

Because all those knowledge complexity measures are theoretically and methodologically 

sound and we do not have an “objective” benchmark to compare them with, a first step for 

comparing those measures and evaluating differences and similarities between them is their 

application to a particular empirical problem. We describe the sample and data we use for this 

comparison next.  

 

DATA SOURCES AND SAMPLE CONSTRUCTION 

 

It is important to note that “datasets are limited by the coarsening, frequency and universality 

of the administrative classifications and geographic boundaries to define them” (Hidalgo, 

2021, p. 5). Researchers thus need to make a number of choices in the empirical 

operationalization including the geographic scale of analysis, the granularity of the 

technology/knowledge classification, the criteria for allocating knowledge packets (usually 

patents) to different knowledge classes, or “rules of presence” of technology/knowledge 

classes in particular locations. In addition to the choice of complexity measure, those decisions 

may or may not lead to different empirical measures of regional knowledge complexity and 

derived conclusions for smart specialization indices. 

 

In line with existing literature, we proxy geographical knowledge production with patent 

data.5 In particular, we use patent applications to the European Patent Office (EPO) filed by 

resident inventors of EU (incl. UK) and EFTA countries from 1996 to 2017. These patent 

applications are sourced from the OECD REGPAT6 database, January 2021, which localizes 

 
5 Notwithstanding known limitations (see e.g. Pavitt, 1985; Griliches, 1990; Schmoch, 1999), patents include 
invaluable information about innovative activities. 
6 The OECD REGPAT database fully derives the EPO’s Worldwide Statistical Patent Database (PATSTAT Global, 
Autumn 2020). It includes patent applications filed to the EPO and patent applications filed under the Patent Co-
operation Treaty (PCT) at the international phase (see Maraut et al., 2008 for details). 
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patents in NUTS-3 regions by inventor residence. We map these patents to metropolitan 

regions defined by EUROSTAT7 (2019) which are expected to represent more accurately 

functional regions of knowledge creation. This is the case because they might reduce artificial 

intersections of urban agglomerations by NUTS-3 borders that could lead to problematic 

interpretations in a spatial context (Lepori et al., 2019). In order gain a comparable set of 

metro-regions across the EU and EFTA countries, we (fractionally) remove patents where 

inventors are located outside of metropolitan regions. As the vast majority of knowledge 

production occurs in or around cities, the exclusion of peripheral regions removes around 20% 

of patents from the dataset.  

 

Besides information about the inventor(s) and other relevant data, patent documents list the 

specific technology class(es) to which the invention pertains. The hierarchical classification 

system Cooperative Patent Classification (CPC) distinguishes between nine technologies at the 

highest level of aggregation (Sections) and about 250,000 classes at the most detailed level 

(Subgroups). The choice of level of disaggregation in terms of technology classes is an 

important one because it determines the level of detail in which technologies can be analyzed. 

Furthermore, if technology classes are too heterogeneous in size or cover sub-technologies 

within a class that are not homogenous enough, results based on these classes can be 

distorted if similar technology sub-fields are classified in different technology classes 

(Schmoch, 2008; Balland et al., 2019). Recent related studies have mostly relied on the 

detailed 4-digit level (about 650 Subclasses) but also on the technological classification 

proposed by Schmoch (2008) which maps IPC8 classes onto 35 technological fields (e.g. 

Antonelli et al., 2017; Balland and Rigby, 2017; Balland et al., 2019). 

 

Following related literature (see e.g. Antonelli et al., 2017; Broekel, 2019; Mewes and Broekel, 

2020; Whittle et al., 2020), we sum the number of patent applications for five consecutive 

 
7 Metropolitan regions are aggregations of NUTS-3 regions which are combined to more realistically represent 
urban regions and to come close to functional regions of cities, including commuter belts around those cities. 
NUTS-3 regions between urban agglomerations of at least 250.000 inhabitants are classified as periphery. We 
use metropolitan regions based on the NUTS 2013 classification. See 
https://ec.europa.eu/eurostat/web/metropolitan-regions/background for details. 
8 The International Patent Classification (IPC) is closely related to the CPC where the CPC is an extension of the 
IPC that is jointly managed and used by the EPO and the US Patent and Trademark Office. The IPC is used globally.  
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years to smooth out large fluctuations in annual patent applications for some city-regions. This 

procedure yields a dataset with yearly regional patent applications from 2000 to 2017 (where 

the focal year is at the end of the moving window)9. Prior to further refinements of the dataset 

that are necessary, specifically for the ECI and EFC index, this dataset contains 188,077 patent 

applications of inventors located in 269 city-regions in 2000 and 252,765 patents filed in 273 

regions in 2017. 

 

Despite the summation of patent applications over a five-year period, some city-regions 

produce few patents in a given period. These small numbers might bias some of our 

complexity measures (Cantwell and Vertova, 2004; Laursen, 2015). Hence, we set a fixed 

minimum threshold10 of 50 patent applications per city-region and of 10 patent applications 

per technology for each period. This leads to the exclusion of between 72 city-regions in the 

early periods and 38 city-regions in 2017. City-regions that were excluded are predominantly 

Eastern and Southeastern European non-capital regions. This is not surprising as Eastern and 

Southern European regions have historically recorded very few patents (Fischer et al., 2009). 

To make sure that changes in the annual sample of city-regions do not influence our results, 

we focus our analysis on the city-regions and technology classes that pass the minimum patent 

threshold in each period. 197 metropolitan regions and 542 (CPC 4-digit) technology classes 

fulfil these basic requirements every period. The final dataset contains 186,250 patent 

applications in 2000 and 247,321 patents applications in 2017 in 197 metropolitan regions and 

associated with 542/35 technology classes (CPC 4-digit / Schmoch).  

 

In order to evaluate our complexity measures with regional outcome variables, we also utilize 

data on regional growth in GDP, GDP per employee and number of patents. GDP data is 

sourced from ARDECO11.  

 
9 For example, the first period used is 2000, which consists of data of 1996,1997,1998,1999,2000. 
10 These thresholds are fractionally counted. Moreover, the exclusions are also fractionally, i.e., a patent is not 
completely removed from the dataset if its inventors are located in an excluded region and another region that 
remains in the dataset.  
11 ARDECO is the Annual Regional Database of the European Commission’s Directorate General for Regional and 
Urban Policy. This helpful database is a collection of regional data from different sources but mainly from 
EUROSTAT. See https://ec.europa.eu/knowledge4policy/territorial/ardeco-database_en. GDP is deflated to 
2015 values. In order to make GDP data comparable to the metropolitan patent data, we translate NUTS 3 data 
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EMPIRICAL OPERATIONALIZATION OF COMPLEXITY INDICES 

 

In order to calculate the three complexity indices for the 197 metropolitan regions, a number 

of decisions need to be made: First, researchers need to decide whether they aggregate 

individual patents to one of about 650 (in our case 542) 4-digit subclasses of the CPC (CPC-4) 

or one of the 35 technology fields identified by Schmoch (2008). In order to simplify we call 

CPC-4 subclasses and Schmoch technology fields, technology class. Second, as patents can be 

assigned to various technology classes and metropolitan regions (in case of multiple inventors) 

once researchers decided on their definition of technology class (Schmoch or CPC-4), they 

need to decide how patents are allocated across technology class and geographical units, 

either fractionally or through double (full) counting. In the case of fractional counting, a patent 

is allocated to each technology class assigned to it and each location where its inventors 

reside, where the total weight of a patent equals to one. In other words, each technology class 

– location of a patent receives the respective share of the sum of all technology class – 

locations to which a patent is assigned. Double counting, on the other hand, does not limit the 

weight of a patent to one but assigns a patent to all locations and technology classes listed on 

the patent. Third, once all patents are allocated to their respective technology classes and 

metropolitan regions, a “rule of significant presence”, usually a measure of relative regional 

specialization in a particular technology class, needs to be established.  

 

In this study we focus on four different metrics of specialization : the “revealed comparative 

advantage” (RCA, Balassa, 1965), the “normalized revealed comparative advantage” (NRCA, 

Yu et al., 2009), the “relative specialization index” (RSI, Menzel and Maicher, 2017) and the 

“composite matrix” (CM, Fritz and Manduca, 2021).  

 

In our application of regional knowledge production, all four metrics of specialization in 

question require as input a proxy of knowledge production of metropolitan region i in 

technology class k, 𝑋𝑖𝑘.  

 
from ARDECO that comes in the NUTS 2016 classification first to NUTS 3 2013 classification and then aggregate 
this regional data to metropolitan regions. 
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The RCA is the most common alternative which is almost exclusively used in past studies of 

knowledge complexity. It approximates the relative specialization of a node of set N (a location 

i) in technology class k. This is done by comparing the share of locations’ activity in technology 

class k with the share of k in the population as a whole.  

𝑅𝐶𝐴𝑖𝑘 =

𝑋𝑖𝑘
∑ 𝑋𝑖𝑘𝑘

∑ 𝑋𝑖𝑘𝑖

∑ ∑ 𝑋𝑖𝑘𝑘𝑖

⁄ (6) 

As the RCA is truncated on one side and its real value is hard to interpret, studies typically 

discretize the information generated by the RCA where a value larger than one signals a 

relative specialization of region i in technology class k and values below the cutoff-point the 

lack of specialization: 

𝑀𝑖𝑘
𝑅𝐶𝐴 = {

1  𝑖𝑓  𝑅𝐶𝐴𝑖𝑘 > 1
 0  𝑖𝑓  𝑅𝐶𝐴𝑖𝑘 ≤ 1

(7) 

The composite matrix (CM) was introduced by Fritz and Manduca (2021) as an improvement 

of the RCA with specific properties of the ECI in mind. In addition to the relative specialization 

of location i in technology class k captured by the RCA, the CM adds information about the 

absolute amount of activity in a technology class. 

𝑀𝑖𝑘
𝐶𝑀 = {

1  𝑖𝑓  𝑅𝐶𝐴𝑖𝑘 > 1 𝑜𝑟 𝑋𝑖𝑘 > 𝑎𝑘
    0  𝑖𝑓  𝑅𝐶𝐴𝑖𝑘 ≤ 1 𝑎𝑛𝑑 𝑋𝑖𝑘 ≤ 𝑎𝑘

(8) 

where 𝑎𝑘 is a fixed cutoff-value that determines the specialization of location i in technology 

class k in addition to the relative information of the RCA. We set 𝑎𝑘 equal to the 25th percentile 

of the distribution of patent activity in technology class k. This cutoff-point increases the 

density of the matrix M and corrects for a bias against larger locations of the original RCA (Fritz 

and Manduca, 2021).  

 

The relative specialization index (RSI, Menzel and Maicher, 2017) is another variation of the 

basic idea of the RCA that exhibits a few notable properties. The RSI is bounded between -1 

and 1 with 0 indicating average specialization, compared to the asymmetric range of the RCA 

between 0 and infinity with 1 indicating average specialization. As the right side of the 
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distribution (𝑅𝑆𝐼 > 0) follows a bell-shaped curve it is possible to define the cutoff of 

specialization using the underlying empirical distribution of RSI values.  

𝑅𝑆𝐼𝑖𝑘 = 
𝑋𝑖𝑘
∑ 𝑋𝑖𝑘𝑘

−
∑ 𝑋𝑗𝑘𝑗≠𝑖

∑ ∑ 𝑋𝑗𝑘,𝑘𝑗≠𝑖

(9) 

with j being a location other than i. The interpretation of the RSI is similar to that of the RCA 

in that higher RSI values signal strength of association between location i and technology class 

k. However, the share of technology class k in location i is related to the share of technology 

class k in all locations (minus location i) which can make a difference in large regions. We 

follow Menzel and Maicher (2017) and define specialization as a RSIik value that exceeds a 

location-specific threshold: 

𝑀𝑖𝑘
𝑅𝑆𝐼 = {

1  𝑖𝑓  𝑅𝑆𝐼𝑖𝑘 > (0 + 𝑠𝑡𝑑𝑖)

 0  𝑖𝑓  𝑅𝑆𝐼𝑖𝑘 ≤ (0 + 𝑠𝑡𝑑𝑖)
(10) 

where 𝑠𝑡𝑑𝑖 equals the standard deviation of positive RSIik values in location i. In other words, 

location i is specialized in technology class k if location i patents sufficiently more in technology 

class k than in other technology classes.  

 

In contrast to the other three versions to measure specialization, we do not need to discretize 

the normalized revealed comparative advantage index (NRCA), introduced by Yu et al. (2009) 

and hence, we can exploit the full information contained in the metric. Conceptionally, the 

NRCA is similar to the RCA where a theoretical comparative-advantage-neutral strength of 

association between location and activity is compared with the actual activity in technology 

class k in region i to estimate whether a specialization exists. From equation (6), we can 

rearrange and express the comparative-advantage-neutral (expected) number of patents of 

region i and technology class k as: 

�̂�𝑖𝑘 =
∑ 𝑋𝑖𝑘 ∑ 𝑋𝑖𝑘𝑖𝑘

∑ ∑ 𝑋𝑖𝑘𝑘𝑖

(11) 

The difference between the actual number of patents of location i in technology class k and 

its expected value, �̂�𝑖𝑘, can then be stated as: 

∆𝑋𝑖𝑘 = 𝑋𝑖𝑘 − �̂�𝑖𝑘 = 𝑋𝑖𝑘 − 
∑ 𝑋𝑖𝑘 ∑ 𝑋𝑖𝑘𝑖𝑘

∑ ∑ 𝑋𝑖𝑘𝑘𝑖

(12) 
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When normalizing ∆𝑋𝑖𝑘 by the total number of patents, ∑ ∑ 𝑋𝑖𝑘𝑘𝑖 , the NRCA index follows: 

𝑁𝑅𝐶𝐴𝑖𝑘 = 
∆𝑋𝑖𝑘

∑ ∑ 𝑋𝑖𝑘𝑘𝑖
=

𝑋𝑖𝑘
∑ ∑ 𝑋𝑖𝑘𝑘𝑖

− 
∑ 𝑋𝑖𝑘 ∑ 𝑋𝑖𝑘𝑖𝑘

∑ ∑ 𝑋𝑖𝑘𝑘  ∑ ∑ 𝑋𝑖𝑘𝑘𝑖𝑖

(13) 

Hence, the NRCA measures the comparative advantage of location i in technology class k 

relative to the expected comparative advantage given the size of the location and the size of 

the technology class. The NRCA possesses a few helpful properties that the RCA lacks. First, 

the magnitude of relative comparative advantage can be directly interpreted where a NRCA 

value twice as large signals a comparative advantage of twice the expected comparative 

advantage. Second, the sum (and mean) of NRCA values of a location (across all technology 

classes) and the sum (and mean) of technology class NRCAs (across all locations) equal to zero. 

Consequently, if a region gains comparative advantage in one technology class, it must lose 

comparative advantage in other technology classes. This property fits well with the conceptual 

idea of comparative advantage (Yu et al., 2009). Third, the NRCA is additive in terms of location 

and activity. This means that the measure of comparative advantage is not dependent on 

chosen classifications of locations and technologies as long as hierarchical classifications are 

used. For example, comparative advantage of a region in digital technologies equals the sum 

of the individual comparative advantages of the region in each (sub)technology that falls 

within digital technologies. This property is useful with regards to the topic and data used in 

this paper (e.g. complexity measures that vary only according to the Schmoch (2008) and CPC 

4-digit classifications should be similar). Fourth, possible NRCA values range from −¼ to ¼ 

with zero being the neutral point of no specialization. This symmetry is a helpful property, 

especially if the NRCA values are to be used as further inputs for analyses (Yu et al., 2009). 

Last, zero activity of a location in a given field does not result in a constant zero value of the 

NRCA as is the case with the RCA. In contrast, the amount of comparative disadvantage 

depends on the total number of patents in location i and technology class k. That means that 

a large region (in terms of total number of patent applications) has a larger comparative 

disadvantage compared to a smaller region if both do not produce any patents in a particular 

technology class k.  
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We transform NRCA so its possible values range between 0 and 2 with 1 being the 

comparative-advantage-neutral point. This does not change the beneficial properties of the 

NRCA index but makes values more tractable and allows us to use the results as the matrix M. 

𝑀𝑖𝑘
𝑁𝑅𝐶𝐴 =

𝑁𝑅𝐶𝐴𝑖𝑘
1 4⁄

+ 1 (14) 

 

In the case of the ECI and EFC where information on the geographical distribution of 

knowledge classes influences the ECI and EFC directly, researchers need to decide on the 

method of “counting” ex ante. For the SDI, researchers only need to decide ex post how the 

knowledge complexity values calculated at the level of technology classes are distributed 

across geographical units. In this sense, the calculation of the SDI is independent of their 

spatial concentration, but, in order to calculate location specific SDIs, some form of 

geographical weighting scheme is required. To calculate the SDI with patent data and 

integrate it in our comparison of complexity indices, we require additional information. We 

mostly follow Broekel (2019) in the operationalization of the SDI. As the SDI builds on data of 

technology classes, (sub)components and their combinations need to be defined. For the 

technological level of CPC 4-digit classes, we closely follow Broekel (2019) and define the most 

detailed level of CPC classes (Subgroups) to represent components of CPC 4-digit classes. 

When analyzing patent data on the broad technological level introduced by Schmoch (2008), 

we take CPC 4-digit classes as (sub)components12. The SDI is based on the combinatorial 

network of technology classes. We observe these combinations empirically as co-occurrence 

of component technology classes on patent documents. The following steps are taken for each 

period t to create the combinatorial network 𝐺𝑘 but we omit subscript t to improve 

readability. 

 

For each focal technology class k, all patent documents are retrieved where at least one of the 

technology classes listed on the document corresponds to k13. Then, we calculate the co-

 
12 The Schmoch classification is defined based on the International Patent Classification and not the CPC. 
However, the CPC is based on the IPC and identical in most cases at the 4-digit level.  
13 We exclude technology classes that are present on less than 10 patents. This is done to avoid further 
computational problems that might arise with such small networks and because technology classes that are 
apparently not used are of no particular interest for our analysis. Moreover, this is done in related literature 
(Broekel, 2017).  
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occurrences of component classes and create the adjacency matrix �̂�𝑘. As the NDS and 

consequently the SDI is not defined on valued networks (Emmert-Streib and Dehmer, 2012; 

Broekel, 2019), we dichotomize the matrix �̂�𝑘 to keep only information about the existence 

of a combination but not about its frequency. Now, the matrix �̂�𝑘 represents the 

combinatorial network �̃�𝑘. It links all components that are combined on patents where the 

focal technology k is present. Note that this also includes combinations of component 

technology classes that are not part of k itself but are found on patent documents with k.  

 

It is sometimes the case that �̃�𝑘 is made of multiple non-connected network components. 

Because NDS requires connected networks, we only use the main component of �̃�𝑘. As 

mentioned in Section 0, it is required to calculate structural diversity on multiple samples from 

�̃�𝑘. We randomly draw 𝑆 = 5014 nodes 𝑐 𝜖 𝑆 from �̃�𝑘 and create S sample networks �̃�𝑘,𝑐 using 

a random walktrap algorithm15 that explores the network, starting from c. Finally, this 

combinatorial network �̃�𝑘,𝑐 is used to calculate 𝑖𝑁𝐷𝑆(𝐺𝑘) in equation (3) which is averaged 

over all samples in equation (4) and transformed in equation (5) to yield the structural 

diversity index of technology class k.  

 

As the SDI is in its estimation independent of the location of knowledge production, we need 

to weight technology class specific SDIs to obtain region-specific SDIs. There are multiple ways 

of calculating SDI values for metropolitan regions including the calculation of a weighted 

average of technological complexity values according to the number of patents per technology 

class in a region (Rigby et al., 2022) or estimating regional knowledge production capabilities 

by calculating an average of only the top most complex patents a region has produced (Mewes 

and Broekel, 2020). In order to facilitate the comparability of the SDI to ECI and EFC, we opt 

 
14 In case the network has fewer than 50 nodes, S is set equal to the number of nodes of the network. 
15 Broekel (2019) uses a random walktrap algorithm with a constant 150 steps. In our estimations we observed 
that when taking a constant number of 150 steps, the random walker did not manage to sufficiently explore 
larger networks (Emmert-Streib and Dehmer, 2012). This led to the fact that there was no consistent positive 
correlation between the size of the sampled combinatorial network and the structural diversity when applying 
the SDI to generated small-world networks. However, this property should be inherent in the index, as Emmert-
Streib and Dehmer (2012) showed. To remedy this, we used a relative number of steps equal to 50% of the 
number of nodes of the combinatorial network samples are drawn from. This enables the random walker to 
explore more nodes when the original network is larger and better contains information about the size of the 
network in the samples.  
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for estimating regional SDI as the (weighted) average structural diversity of technology classes 

k a region is specialized in. Conveniently, this information is already given by the four M 

matrices that are used in calculating the ECI and EFC.  

 

Hence, we define 𝑆𝐷𝐼𝑖  as the unweighted average of 𝑆𝐷𝐼𝑘 of technology classes k in which 

metropolitan region i is specialized according to RCA, RSI and CM. When allocating regional 

SDI based on the relative specialization metric NRCA, we utilize the full information of the real-

valued strength of association and calculate the weighted average of all technology classes 

𝑆𝐷𝐼𝑘 with the weight equal to element 𝑀𝑖𝑘
𝑁𝑅𝐶𝐴 to yield 𝑆𝐷𝐼𝑖.  

 

Combining the three complexity measures, ECI, EFC and SDI, two technology classes (CPC-4 

and Schmoch), two allocation methods (fractional or full counting) with four specialization 

indices (RCA, NRCA, RSI, CM) yields a total of 3*2*2*4=48 alternative knowledge complexity 

measures for each of the 197 metropolitan regions and 5-year periods (see Figure 1). Those 

48 alternative measures of knowledge complexity are compared next.  
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Figure 1 The 48 variations of the regional knowledge complexity index 
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EMPIRICAL EVALUATION OF COMPLEXITY MEASURES 

 

As there is no “true” complexity value to benchmark different complexity measures against 

(Hidalgo, 2021), it is important to examine how sensitive the geographical complexity 

measures are to their empirical operationalization.  

 

We evaluate the 48 alternatives according to the following criteria: 

I. In order to examine the consistency of regional complexity scores across the 48 

alternatives we first calculate correlation coefficients between the annual complexity 

scores of the 197 metropolitan regions. The correlation coefficients are then averaged 

over time to produce a measure of consistency between regional complexity indices 

which we visualize with a correlation matrix (Figure 2) and examine via a simple 

modelling framework (Table 1). Furthermore, we illustrate the problem of different 

complexity values to inform smart specialization policies through an application of 

three alternative complexity measures for 35 knowledge fields for the metropolitan 

area of Vienna (Figure 3).  

 

II. As diversification into new technologies is path-dependent and rooted in the existing 

set of capabilities (Martin and Sunley, 2006; Feldman and Kogler, 2010; Neffke et al., 

2011; Boschma et al., 2015; Essletzbichler, 2015; Boschma, 2017), the measures should 

be relatively stable over time. Small annual changes in metropolitan complexity values 

and metropolitan rankings according to complexity values over time are expected, but 

a complete reshuffling or reversals in rankings from one year to another are 

implausible. We would interpret those temporal inconsistences as problematic as the 

diversification strategies of cities could be classified as smart in one year and non-

smart in another. We visualize the problem with two bump charts to illustrate a case 

of relative stability and a case of relative instability of metropolitan complexity 

rankings over time (Figure 4a and 4b). We summarize the temporal consistency for all 

48 alternatives by correlating metropolitan complexity scores in year t with those of 

year t+1 (Figure 5).  
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III. The literature suggests that knowledge complexity is linked to desirable economic 

outcomes such economic and technological development  (Antonelli et al., 2017, 2020; 

Mewes and Broekel, 2020; Pintar and Scherngell, 2021; Rigby et al., 2022). We thus 

correlate the alternative complexity values with GDP and GDP/capita growth as well 

as the growth in the number of patents. As we would expect knowledge complexity to 

influence economic and technological growth over the medium to long-run we 

correlate the 15-year growth rates of those indicators with the complexity values at 

the base year. 

 

I Relationship between complexity measures 

Based on the theoretical and conceptual literature, we have little expectations on the 

relationship between the 48 different complexity measures. In order to get an idea about the 

relationship between our 48 complexity measures, Figure 2 depicts bivariate relations 

between the metropolitan regions’ complexity scores according to those complexity 

measures. While some measures appear to yield similar rankings, others do not. Strong 

positive (and stable) relationships appear more common among the alternatives with the 

same complexity measure.  

 

In the case of the ECI (top of the graph), positive correlation coefficients dominate when 

Schmoch is used as technology class. In the case of the EFC the use of technology class appears 

to be less important and positive correlations seem to be restricted to those alternatives that 

utilize the CM or RCA as specialization measure (although many of the correlation coefficients 

are not stable over time). In the case of the SDI, positive correlation coefficients are apparent 

if the same technology classification is used (either Schmoch or CPC-4) (bottom right corner). 

Furthermore, we observe strongly negative and stable correlation coefficients between the 

ECI (with Schmoch) and SDI (with Schmoch) as well as between EFC and SDI indices. But these 

are general trends from which individual pairs of correlation coefficients deviate.  
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Figure 2 Bivariate correlation coefficients between alternative complexity measures 

 

Note: Cell values reflect the contemporaneous correlation between variations of the complexity index, averaged 
over all 18 periods. Cell color and shadings represent the strength of association as well as the variation over 
time where less stability (higher variation) is signaled by lighter colors. Correlations around zero that are also not 
stable are not labeled and filled with white. This is done for visualization purposes only. 

 

In order to analyze systematically the factors that influence the bivariate relationship between 

two alternatives, we introduce a simple modelling framework. Table 1 presents the results of 

this modelling exercise where we explain the average bivariate correlation between two 

knowledge complexity indices with a set of dummy variables that indicate whether two 

alternatives share the same specifications in terms of the measure, technology classification, 

method of counting and metric of specialization used, or combinations thereof. For example, 
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for alternatives 1 (ECI, Schmoch, fractional, RCA) and and 9 (ECI, CPC4, fractional, RCA) the 

dummy for measure=1, for technology (tech)=0, for counting (count)=1 and for specialization 

(spec)=1. The intercept is the average correlation coefficient if all dummies are equal to 0 (i.e. 

all specifications differ). Table 1 includes the results for all complexity measures jointly 

(columns 1 and 2) and for all the complexity measures separately (columns 3-8). We focus on 

the models including all complexity measures first. The negative and significant intercept 

(Model (1)) indicates that the complexity measures result in no relation or even negative 

relationships between metropolitan rankings based on those measures, suggesting that the 

choice of measure matters. Models (1) and (2) also indicate that the complexity measure is 

the most important variable to obtain a positive correlation between two alternative 

complexity measures.  

 

Model (2) examines whether the effects of utilizing the same specification other than the 

measure on the bivariate correlation between alternatives is context dependent. This is done 

by introducing interaction terms. It turns out that applying the same technology classification 

or the same metric of specialization increases the bivariate correlation substantially16 but only 

if the two alternatives apply the same complexity measure17. Interestingly, using the same 

complexity measure but varying all other variables (different technology classifications or 

specialization indices) does not raise the correlation coefficient. Hence, it appears that the 

measure of complexity in conjunction with common technology classifications or 

specialization indices is the most important indicator to generate positive correlation 

coefficients between two alternatives. We examine the relationship between alternatives for 

each of the three complexity measures separately next (columns 3-8). 

 
16 Introducing interactions into the model complicates the interpretation of coefficients somewhat. The effect of 
having the same technology classification (given the same measure but different metric of specialization) on the 
bivariate correlation is equal to the sum of the coefficient of the “tech” dummy and the interaction term between 
“measure” and “tech” (-0.074 + 0.293 = 0.219). Respectively, the effect of using the same metric of specialization 
(given the same measure but different technology classification) is 0.223 (-0.032 + 0.255). Note, since the 
coefficient of the method of counting is basically zero in Model (1) and interaction terms with the dummy variable 
“count” were also zero, we have excluded dummy interaction terms with the method of counting from Model 
(2).  
17 The negative coefficient on the technology classification in Model (2) needs to be interpreted with caution. 
Because we have introduced interactions in the model, this coefficient refers to the decline in correlation 
between alternatives when they share the technology classification but differ in terms of measure and 
specialization. 
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Table 1 Regression output structural relations between knowledge complexity measures 

 

 

Comparing the results for the three complexity values individually with the general models (1) 

and (2), we find that the explanatory power (R2 Adj.) increases, even though we control for 
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fewer variables. The results can be summarized as follows: First, inspection of the intercept 

reveals that a positive correlation in metropolitan regions’ complexity scores where all 

variables differ (dummies set to 0) is found only for the SDI. Second, we find similar patterns 

for the ECI and SDI (Models (3),(4) and (7),(8)): (a) Using the same technology classification or 

specialization measure increases bivariate correlation substantially for ECI and SDI (Models (3) 

and (7)) without taking interaction effects into account; (b) Applying the same method of 

counting patents (fractional or full) has no impact on the correlation between two 

alternatives; (c) The interaction models (Models (4) and (8)) illustrate that specialization 

increases bivariate correlation between alternatives only if they also apply the same 

technology classification. Third, in the case of the EFC (Model 5) only using the same 

specialization metric significantly increases bivariate correlation between alternative 

complexity measures.  

 

Overall, it appears that regional complexity scores vary substantially across alternative 

complexity measures. We illustrate the problem of these differences in complexity values for 

its application to inform a city’s smart specialization strategy using the metropolitan region of 

Vienna. Balland and Rigby (2019) suggested the use of complexity values to inform smart 

specialization policies by arguing that cities should diversify into technologies that are related 

to the existing stock of technologies and that are complex. If all the alternative specifications 

to calculate the complexity of technologies yielded similar results, this exercise would be easy 

to implement and researchers would be free to use any of the complexity index specifications. 

In order to see if that is the case, we compare the technology complexity values of three 

alternatives (5, 21, 37) with varying complexity measures (ECI, EFC, SDI) but keeping all other 

variables constant (Schmoch, RCA, double counting). Although we could use CPC-4 or finer 

grained technology classifications for this kind of policy analysis, for illustrative purposes we 

use the 35 technology fields of Schmoch. Figure 3 plots the relatedness density (Balland et al., 

2019) and the three complexity values for all those technology fields in which Vienna is not 

specialized yet.  

 

The relatedness values of the technology classes to the technology portfolio of Vienna are 

depicted on the horizontal axis, while the complexity values for the three alternatives 
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(standardized by complexity measure between 0 and 100) are depicted on the vertical axis. 

The relatedness values are constant for each technology class, while the complexity values 

vary depending on whether ECI, EFC or SDI were used to calculate them. Although we keep 

most variables constant, the complexity values for some of the technologies vary substantially 

(e.g. Measurement (10) and Basic Materials (19)). Given that a smart specialization policy 

dictates that Vienna should diversify into related technologies (e.g. Other consumer goods 

(34) or chemical engineering (23)) we would then consult the complexity values of those 

technologies. It turns out that they are low when using the ECI or EFC but high when using the 

SDI to calculate the complexity values for those two technology fields. Hence, only in the case 

of the SDI would it be “smart” for Vienna to invest in those two technology fields. Policy 

recommendations based on the ECI would favor investment in Digital Technologies (4) even if 

investment in this technology field is somewhat more risky. Those differences in complexity 

values would be even more pronounced when choosing CPC-4 or different specialization 

measures and policy recommendations based on these measures as a result even more 

diverging. As these differences exist, are there any means of narrowing down the alternatives? 
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Figure 3 Relatedness density and selected complexity values for Vienna 

Note: The numbers in the circles refer to the technology field according to Schmoch (2008) where only 
technology fields are shown in which Vienna does not yet have a specialization. Colors are reserved for broad 
technology categories. The shading reflects the complexity measure. Dark shading = ECI; Medium shading = EFC; 
Light shading = SDI. All three measures apply Schmoch, double/full counting, RCA, and refer to the latest period 
(2017). 

 

II Stability of metropolitan rankings over time 

As argued above, one of the expectations for a complexity measure would be temporal 

stability. Because of the path-dependent nature of technological change, we would not expect 

complexity values for individual cities to change substantially from year to year. In order to 

see whether this is the case, Figure 4 plots the rankings of cities based on their complexity 

values (here illustrated for two alternatives) over time. Figure 4a displays a case of relative 
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stability, while Figure 4b illustrates a case of extreme instability. Figure 4a includes the annual 

rankings of the 197 metropolitan areas for alternative 1 (ECI, Schmoch, fractional, RCA). While 

there is some movement of cities up and down the complexity ranking over the whole 18-year 

period, there is little movement in the rankings on a year-to-year basis. This result is plausible 

and in line with expectations. Figure 4b displays the annual metropolitan rankings for 

alternative 9 (ECI, CPC4, fractional, RCA). Although varying only the level of technology 

aggregation, this version is unstable in the context of EU metropolitan regions. Rankings are 

reversed frequently and this alternative thus seems unsuitable for analyzing knowledge 

complexity in the European context (see also Balland and Rigby, 2017; Rigby et al., 2022).  

 

Figure 4 Metropolitan rankings over time 

(a) Alternative 1 (ECI, Schmoch, fractional, RCA) (b) Alternative 9 (ECI, CPC4, fractional, RCA) 

  

Note: Both charts depict the metropolitan region codes on the vertical axis and the years on the horizontal axis 
(2000-2017). All cities are ranked and colored according to their complexity values in the base year. 

 

Rather than reporting bump charts for every single complexity measure, Figure 5 summarizes 

the information for all alternatives by presenting the correlation coefficients of the complexity 

scores of 197 metropolitan areas for each of the 48 versions of complexity measures over 

time. Each of the 48 rows represents one of the 48 complexity measures (Figure 1) and each 

of the 17 columns represent pairs of years starting with 2000 and 2001 and finishing with 2016 

and 2017.  
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Figure 5 Temporal stability of metropolitan knowledge complexity indices 

Note: Numbered variants refer to the alternatives in the knowledge complexity indices depicted in Figure 1. Cells 
are shaded according to the pearson correlation coefficient of two consecutive years for each alternative and 
year. For example, shaded cells in column and row one (2001, var.1) refer to the pearson correlation coefficient 
of results based on alternative 1 in year 2000 and 2001.  

 

Red (high, positive correlation coefficients) shadings signal identical or highly similar 

complexity scores in two consecutive years whereas blue (high, negative correlation 

coefficients) shadings correspond to a reversal of rankings in two consecutive years. As 

expected from Figure 4a, alternative 1 is characterized by high annual correlation coefficients 

represented by the red shading of all cells. Based on the evolution of metropolitan complexity 
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rankings in Figure 4b, we would expect a number of low or negative correlation coefficients 

for alternative 9. This is confirmed by Figure 5, with blue shaded cells in columns 3 (negative 

correlation coefficient between complexity scores of 2002 and 2003), 6, 7, 9, 10, 14, and 17. 

Based on our plausibility criteria, measures that exhibit little stability in or reversibility of 

rankings should not be used for policy purposes. 

 

While Figure 5 reveals a rather mixed performance of complexity measures with respect to 

temporal (in)stability, a few general conclusions can be drawn. First, all versions of the SDI are 

stable over time. Second, the Economic Fitness Complexity index (EFC) (rows 17-32) is stable 

for versions with RCA and CM as specialization measures but lacks temporal stability when 

calculated with NRCA or RSI. This appears to be a result of the non-linear algorithm of the EFC 

(see second section) that does not work properly when the NRCA or RSI metrics of 

specializations are used. Third, the pattern emerging from the Economic Complexity Index 

(ECI) is more complex with excellent temporal stability for some of the alternatives (e.g. ECI, 

Schmoch, fractional, RCA) and instability for others (e.g. ECI, CPC4, fractional, RCA) 18. Because 

the SDI is based on technological complexity (rather than spatial ubiquity) only, the choices of 

technology classification, fractional counting, or specialization to “spatialize” the index do not 

seem to have an impact on the temporal stability of the index. 

  

 
18 Some of the results make intuitive sense while others are more difficult to explain. For instance, the instability 
of alternative 8 is likely due to the fact that the CM metric distributes the same specializations for a sizeable 
number of regions as it accounts for the absolute number of patents in addition to the relative specialization. 
Hence, in many cases large metropolitan regions receive a specialization in all 35 fields which in turn leads to 
them having the same complexity score (in the case of the ECI). This effect appears less pronounced when the 
CM is combined with Schmoch and fractional counting (instability of alternative 8, but not 4). 
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III Complexity and regional growth 

One of the reasons for the interest in knowledge complexity is the assumed positive 

relationship with economic and technological growth. Differences in regional economic 

development are not only the result of quantitative differences in R&D expenditure or the 

number of patents but also the quality of innovative output, i.e. the knowledge complexity 

embodied in a region (e.g. Antonelli et al., 2017, 2020; Mewes and Broekel, 2020; Pintar and 

Scherngell, 2021; Rigby et al., 2022). We examine the bivariate relationship between the 48 

alternative complexity measures and three indicators of growth (GDP growth, (labor) 

productivity or GDP/employee (emp) growth and growth in the number of patents) by 

correlating the complexity values with 15-year growth rates in GDP, GDP/emp and the growth 

in the number of patents19. 

Figure 6 depicts graphically the mean and standard deviations of the correlation coefficients 

between the 48 alternative complexity score and 15-year growth rates (see footnote 19) and 

reveals the following pattern: First, the ECI with Schmoch tends to correlate positively with 

GDP growth and GDP/emp growth but has little impact on the growth of patents. The 

correlation coefficients of the SDI with Schmoch are negative for GDP and GDP/emp growth 

but indicate no relationship with patent growth. There is no clear pattern emerging for the 

different alternatives of the EFC and there is a slight positive relationship for the SDI with CPC-

4 and GDP and GDP/emp growth. While we do not suggest that complexity measures should 

be chosen because of their empirical (bivariate) link with GDP growth, there is an argument 

for the ECI with Schmoch if the relationship between complexity and GDP growth is at the 

center of a particular research project. Needless to say that full growth models would need to 

be estimated to control for potential intervening or confounding variables.  

 

 
19 We calculate 5-year moving averages for GDP, GDP/employee and the number of patents in order to smooth 
out annual fluctuations. GDP2017 is then the five-year average of the GDP of the years 2013-2017, etc. We then 
calculate 15-year growth rates (GDP2000-GDP2015; GDP2001-GDP2016; GDP2002-GDP2017, etc.) and correlate 
those with the 48 alternative complexity scores of the base year (e.g. complexity score in 2000 with GDP growth 
2000-2015; complexity score 2001 with GDP growth 2001-2016, etc.). This yields three correlation coefficients 
of which we use the mean and the standard deviation. Both are depicted in Figure 6.  
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Figure 6 Bivariate correlation coefficients between knowledge complexity and regional growth 

 

Note: Points reflect the contemporaneous correlation of alternatives of the complexity index with indicators of 
regional growth. Horizontal bars represent one standard deviation (over time) distance from the correlation 
coefficient (mean) on both sides. Many correlation coefficients are so stable over time that the standard 
deviation is not visible as bars do not extend beyond the point. Color is used to distinguish between measures of 
knowledge complexity indices. “GDP gr.”, “GDP(p.e.) gr.” And “pat. gr.” stand for 15-year growth of logged 
regional GDP, logged GDP per employee (labor productivity) and patent growth, respectively.  
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CONCLUSION 

 

This paper offered a first systematic comparison of different complexity measures applied to 

a consistent set of patent data for 197 European metropolitan regions for the period 1996-

2017. Differences between territorial and technological complexity indices can thus be 

attributed to different choices of complexity measures and empirical operationalizations of 

them rather than differences in data sources, time frame or sample variation. Furthermore, 

the paper compared a number of alternatives already employed in the literature and added a 

number of new alternatives that are interesting from a theoretical and conceptual point of 

view (especially with respect to calculating regional specializations in particular knowledge 

classes/fields). And finally, the paper illustrated that the choice of various measures to 

calculate empirical regional and technology complexity values are not trivial but lead to widely 

differing results that have an influence on the policy conclusions that follow from them. If we 

go back to Figure 1 and apply our evaluation criteria to try and eliminate variations based on 

their temporal stability criteria and then choose among the remaining alternatives those that 

appear most correlated with indicators of regional development, we would end up with the 

results presented in Figure 7 (see below).  

Rather than suggesting that policy makers and researchers should mechanistically apply the 

results of this analysis to inform smart specialization policies in practice, our conclusions and 

recommendations are much more modest and invite to caution more than offer prescriptions. 

Because there are no good theoretical or conceptual reasons to adopt one complexity 

measure over another, we do need more theoretical and conceptual work that would offer 

better guidance for choosing “the” suitable measure before it is widely applied to guide 

funding decisions. We would also recommend to choose a portfolio of complexity measures 

(the programs to do so are widely available) to get a sense of the sensitivity of policy 

recommendations to the choice of complexity measures in particular contexts. And finally, it 

makes sense to form prior expectations and hypotheses based on a researcher’s knowledge 

of a particular region or technology field to be able to evaluate the results. Hence, while the 

implementation of knowledge complexity measures may introduce a general mechanistic (and 

efficient) implementation guideline for smart specialization policies it will not be able to 

replace experts and their in-depth knowledge of the current research strengths and portfolios, 
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industrial and product specializations of companies or the strength and weaknesses of 

research institutions in particular local contexts.  

 

Figure 7 Eliminated and selected complexity measures 

 

Legend: 

 Eliminated based on temporal stability criteria 

  Chosen if link to economic or (labor) productivity growth is of interest 

  Chosen if link to (labor) productivity growth (only) is of interest 
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