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Abstract  
This paper aims to offer an advanced assessment methodology for sustainable national energy-

environment-economic efficiency strategies, based on an extended Data Envelopment Analysis (DEA) in which 
distinct countries are regarded as Decision Making Units (DMUs). The aim is to show how much various 
countries can improve their combined efficiency profile. Standard DEA models use a uniform input reduction or 
a uniform output increase in their improvement projections. The development of novel efficiency-improvement 
solutions based on DEA has greatly progressed in recent years. A recent example is the Distance Friction 
Minimisation (DFM) method, which aims to generate an original contribution to efficiency-enhancement 
strategies by deploying a weighted projection function, while it may address both input reduction and output 
increase as a strategy of a DMU. To design a feasible improvement strategy for low-efficiency DMUs, we 
develop a Target-Oriented (TO) DFM model that allows for less ambitious reference points that remain below 
the efficiency frontier. The TO-DFM model calculates then a Target-Efficiency Score (TES) for inefficient 
DMUs. This model is able to compute an input reduction value and an output increase value in order to achieve 
this TES. However, in many real-world cases the input factor may not be immediately flexible or adjustable, due 
to indivisibility (or lumpiness) of the input factor. Usually, a DEA model does not include such a non-
controllable or a fixed factor. In this study, we aim to   integrate the TO-DFM model with a fixed factor (FF) 
model in order to cope with realistic circumstances in our search for an efficiency improvement projection in 
combined energy-environment-economic strategies of individual nations.  

The present paper aims to offer an original contribution to efficiency enhancement in national 
sustainability strategies by means of the above described DEA approach. After the description of the methodology, 
a complementary Super-efficiency (SE) approach to DEA is used in our comparative study on the efficiency 
assessment of energy-environment-economic targets for the EU, APEC and ASEAN (A&A) countries, using 
appropriate data sets ranging from the years 2003 to 2012. In the present study, we consider two inputs (primary 
energy consumption and population) and two outputs (CO2 and GDP), including a fixed input factor, namely the 
‘population’ production factor that cannot be flexibly adjusted. On the basis of our DEA analysis results, it appears 
that EU countries exhibit generally a higher efficiency than A&A countries. In particular, it turns out that Cyprus, 
Luxembourg and Ireland may be seen as super-efficient countries in the EU, and Brunei as a high performance 
country in A&A. The above-mentioned TO-DFM-FF projection model is used to address realistic circumstances 
and requirements in an operational sustainability strategy for efficiency improvement in inefficient countries in the 
A&A region.  
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 EU, APEC, ASEAN countries, Target-oriented DEA, Super-efficiency 
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1. Introduction 
 
Economic growth has to be accompanied simultaneously by resource and environment conservation in a 

sustainable world.  In 2014, the ‘International Energy Efficiency Scorecard’, published by ACEEE (American 
Council for an Energy-Efficient Economy)(2014), pointed out: ‘Countries can preserve their resources, address 
global warming, stabilize their economies, and reduce the costs of their economic outputs by using energy more 
efficiently—an eminently achievable goal.’ This report analysed the world’s 16 largest economies 
(countries/regions). The report looked at 31 criteria, divided roughly in half between policies and quantifiable 
performance in order to evaluate how efficiently these economies use energy. The scores for the policy criteria 
were based on the presence in a country/region of a best-practice policy. However, this evaluation relied heavily 
on rather subjective policy criteria. Therefore, the actual conditions of energy efficiency for each country/region 
were not evaluated in an appropriate or testable manner. 

A standard tool by which to judge efficiency among different actors is Data Envelopment Analysis (DEA), 

proposed by Charnes, Cooper and Rhodes (1978) (hereafter CCR: see Appendix A1).  This has become over the 

past decades an established quantitative assessment method in the evaluation literature. Seiford (2005) mentions 

even more than 2800 published articles on DEA in various fields and this number is nowadays already much 

higher. Meanwhile, there are in a sustainability context also several studies that have applied DEA models to 

measure aggregate energy-environment-economic efficiency among countries or regions, regarded as Decision 

Making Units (DMUs). For example, Zhou et al. (2008) presented a literature survey on the application of DEA 

to energy and environmental (E&E) studies, followed by a classification of 100 publications in this field. This 

study argues that all this research which provides lists of DMUs is confined to just one country or major region, 

such as the OECD, APEC, and the EU, or developing countries, but without a rigorous cross-regional comparison, 

for example, the EU vs. APEC and ASEAN (hereafter A&A). A&A countries are places where remarkable 

economic development is taking place, but comparing them from the viewpoint of energy-environment-

economic efficiency with the performance of EU countries brings to light often contrasting findings. Martínez 

(2011) measures energy-efficiency development in non-energy-intensive sectors (NEISs) in both Germany and 

Colombia, based on a DEA model. And Wu et al. (2013) apply a DEA model - and related Malmquist indices - 

for an efficiency evaluation of regions in China. The above list of studies shows that comparative efficiency 

analysis in the energy-environment sector using DEA models has increasingly become an important research 

topic in recent years (see also Suzuki et al. 2011).  

It should be noted that DEA was originally developed to analyse the relative efficiency of a DMU by 

constructing a piecewise linear production frontier and projecting the performance of each DMU onto that frontier. 

A DMU that is located on the frontier is efficient, whereas a DMU that is off on the frontier is inefficient. The 
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wealth of DEA studies has demonstrated that an inefficient DMU can become efficient by reducing its inputs, or 

by increasing its outputs. In the standard DEA approach, this is achieved by a uniform reduction in all inputs (or a 

uniform increase in all outputs). However, in principle, there are an infinite number of possible improvements that 

could be implemented in order to reach the efficient frontier, and, hence, there are many solutions should a DMU 

plan to enhance its efficiency. We refer to the standard textbook of Cooper et al. (2006) for a full exposition. 

It is noteworthy that in the past few decades, the existence of many possible efficiency improvement solutions 

has prompted a rich literature on the methodological integration of Multiple Objective Linear Programming 

(MOLP) and DEA models. We will offer a concise overview here (see also Suzuki et al. (2010)). One of the first 

contributions was offered by Golany (1988) who proposed an interactive MOLP procedure, which aimed at 

generating a set of efficient points for a DMU. This model allows a decision maker to select a preferred set of 

output levels, given the input levels. Likewise, Thanassoulis and Dyson (1992) developed adjusted models, which 

can be used to estimate alternative input and output levels, in order to render relatively inefficient DMUs more 

efficient. These models are able to incorporate preferences for a potential improvement of individual input and 

output levels. The resulting target levels reflect the user’s relative preference over alternative paths to efficiency. 

Later on, Joro et al. (1998) demonstrated the analytical similarity between a DEA model and a Reference Point 

Model in a MOLP formulation from a mathematical viewpoint. In addition, the Reference Point Model offers 

suggestions which make it possible to search freely on the efficient frontier for good solutions, or for the most-

preferred solution (MPS), based on the decision maker’s preference structure. Furthermore, Halme et al. (1999) 

developed a Value Efficiency Analysis (VEA), which included the decision maker’s preference information in a 

DEA model. The foundation of VEA originates from the Reference Point Model in a MOLP context. Here, the 

decision maker identifies the MPS, such that each DMU could be evaluated by means of the assumed value 

function based on the MPS approach. A further development of this approach was made by Korhonen and 

Siljamäki (2002), who dealt with several practical aspects related to the use of a VEA. In addition, Korhonen et al. 

(2003) developed a multiple objective approach, which allows for changes within the time frame concerned. Lins 

et al. (2004) proposed two multi-objective approaches that determine the basis for the incorporation of a posteriori 

preference information. The first of these models is called Multiple Objective Ratio Optimization (MORO), 

which optimizes the ratios between the observed and the target inputs (or outputs) of a DMU. The second model 

is called Multiple Objective Target Optimization (MOTO), which directly optimizes the target values. Washio et 

al. (2012) suggested four types of improvements for making inefficient DMUs efficient in the CCR framework, 

by introducing a decision-maker’s policy model with a minimal change of input and output values. More recently, 

Yang and Morita (2013) utilised DEA and Nash bargaining game (NBG) theory to help improve inefficient banks 

in the financial sector, in order to: (i) make an inefficient bank Pareto-optimal from multiple perspectives, which 
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could avoid being dissatisfied with some particular management or market perspectives; and (ii) change its 

attributes and provide various improvement schemes for decision makers. Furthermore, Suzuki et al. (2010) 

proposed a Distance Friction Minimization (DFM) model that is based on a generalized distance function and 

serves to improve the performance of a DMU by identifying the most appropriate movement towards the 

efficiency frontier surface. The DFM model is able to calculate either an optimal input reduction value or an 

optimal output increase value in order to reach an efficiency score of 1.000, even though in reality this might be 

hard to achieve for low-efficiency DMUs.  Recently, Suzuki et al. (2015) presented a newly developed adjusted 

DEA model, emerging from a blend of the DFM and the target-oriented (TO) approach based on a Super-

Efficiency model, for generating an appropriate efficiency-improving projection model. The TO approach 

specifies a target-efficiency score (TES) for inefficient DMUs. This approach can compute an input reduction 

value and an output increase value in order to achieve a higher TES.  However, in many cases, the input factor 

may not be flexible or adjustable due to the indivisible nature or inertia in the input factor. Usually, the DEA model 

does not allow for a non-controllable or a fixed input factor.  

In this study, we will present empirical results from a comparative assessment on energy-efficiency in various 

countries, by integrating the TO-DFM model with a fixed factor (FF) model (see Suzuki et al. 2011) in order to 

cope with realistic circumstances in our search for a feasible efficiency improvement projection. After the 

description of the methodology, a Super-efficiency model (Andersen and Petersen (1993): see Appendix A2) for 

DEA is used in a comparative study on the efficiency assessment of energy-environment-economic goals for EU 

and A&A countries, using appropriate data sets ranging from 2003 to 2012. In this study, we consider two inputs 

(primary energy consumption and population) and two outputs (CO2 and GDP), including a fixed input factor 

related to population. In this comparative analysis, we will conceive of ‘population’ as a production factor that 

cannot be flexibly adjusted in a short period of time. The above-mentioned TO-DFM-FF projection model is used 

to consider realistic circumstances and requirements in an operational strategy for a feasible efficiency 

improvement in inefficient countries in A&A. 

  The paper is organized as follows. Section 2 describes our DFM methodology, while Section 3 introduces the 

combined TO-DFM model. Section 4 proposes the newly developed model, which is a Fixed Factor (FF) model 

in the framework of a TO-DFM model. Section 5 then presents an application of the methodology to an 

efficiency analysis of “Energy-Environment-Economics” performance of the EU and A&A countries. Finally, 

Section 6 offers some conclusions. 
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2. Outline of the Distance Friction Minimisation (DFM) approach 

 

An efficiency-improvement solution in the original DEA model (abbreviated hereafter as the CCR-input 

model: see Appendix A1) requires that the input values are reduced radially by a uniform ratio ∗θ ( ∗θ =OD’/OD 

in Figure A1).  

The (v*, u*) values obtained as an optimal solution for formula (A.1) result in a set of optimal weights for 

DMUo. Hence, (v*, u*) is the set of most favourable weights for DMUo , measured on a ratio scale. vm
* is the 

optimal weight for input item m, and its magnitude expresses how much in relative terms the item is contributing 

to efficiency. Similarly, us
* does the same for output item s. These values show not only which items contribute to 

the performance of DMUo, but also the extent to which they do so. In other words, it is possible to express the 

distance frictions (or alternatively, the potential increases) in improvement projections. 

We use the optimal weights us
* and vm

* from (A.1), and then describe the efficiency improvement projection 

model. A visual presentation of this approach (DFM projection) is given in Figures 1 and 2 (see also Suzuki et al. 

(2010)). 

 
Figure 1 Illustration of the DFM approach (Input- vi

*xi space) 

Weighted Input 1 (v1
*x1) 

Weighted 
Input 2 
(v2

*x2) 

O 

A 

D 

B C 

D’ 

v2
*x2o 

v1
*x1o 

v2
*d2o

x 

v1
*d1o

x 
D* 

v2
*x2o

* 

v1
*x1o

* 



- 5 - 
 

 
Figure 2 Illustration of the DFM approach (Output - ur

*yr space) 

 

In this approach, a generalized distance indicator is employed to assist a DMU to improve its efficiency by a 

movement towards the efficiency frontier surface. Of course, the direction of efficiency improvement depends on 

the input/output data characteristics of the DMU. It is now appropriate to define the projection functions for the 

minimization of distance by using a Euclidean distance in weighted space. As mentioned earlier, a suitable form of 

multidimensional projection functions that serves to improve efficiency is given by a Multiple Objective 

Quadratic Programming (MOQP) model, which aims to minimize the aggregated input reductions, as well as the 

aggregated output increases. Thus, the DFM approach can generate a new contribution to efficiency enhancement 

problems in decision analysis by employing a weighted Euclidean projection function, and, at the same time, it 

might address both input reduction and output increase. Here, we only briefly describe the various steps (for more 

details, see Suzuki et al., 2010, Suzuki and Nijkamp 2011, and Kourtit et al. 2013).  

First, the distance function Frx and Fry is specified by means of (2.1) and (2.2), which are defined by the 

Euclidean distance shown in Figures 1 and 2. Next, the following MOQP is solved by using x
mod (a reduction of 

distance for xio) and y
sod (an increase of distance for yso) as variables: 
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       s.t.    ( ) ∗

∗
∗

+
=−∑ θ

θ
1
2

m

x
momom dxv                                     (2.3) 

( ) ∗

∗
∗

+
=+∑ θ

θ
1
2

s

y
sosos dyu         (2.4) 

0≥− x
momo dx         (2.5) 

0≥x
mod          (2.6) 

0≥y
sod ,         (2.7) 

 

where mox  is the amount of input item m for any arbitrary inefficient DMUo; and soy is the amount of output item 

s for any arbitrary inefficient DMUo. The constraint functions (2.3) and (2.4) refer to the target values of input 

reduction and output augmentation. The fairness in the distribution of contributions from the input and output side 

to achieve efficiency is established as follows. The total efficiency gap to be covered by inputs and outputs is (1-

θ*). The input and the output side contribute according to their initial levels 1 and θ*, implying shares θ*/(1+θ*) 

and 1/(1+θ*) in the improvement contribution. Clearly, the contributions from both sides equal (1-θ*)[θ*/(1+θ*)] 

and (1-θ*)[1/(1+θ*)].  

It is now possible to determine each optimal distance ∗x
mod  and ∗y

sod  by using the MOQP model (2.1)-(2.7). 

The distance minimization solution for an inefficient DMUo can be expressed by means of formulas (2.8) and 

(2.9): 

 
∗∗ −= x

momomo dxx ;         (2.8) 

∗∗ += y
sososo dyy .        (2.9) 

   

By means of the above described DFM model, it is possible to present a new efficiency-improvement solution 

based on the standard CCR projection. This means an increase in new options for efficiency-improvement 

solutions in DEA. The main advantage of the DFM model is that it yields an outcome on the efficient frontier that 

is as close as possible to the DMU’s input and output profile (see Figure 3).  This approach has functioned as an 

ingredient for many recent DEA studies of the authors. 
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Figure 3 Degree of improvement of the DFM and the CCR projection in weighted input space 

 

At this stage it may be appropriate to judge the advantages of the DFM approach in comparison with some 

other approaches. In particular, the additive model (Charnes, 1985) and the Slack-Based Measure (hereafter 

SBM; Tone, 2001) model are representative for the class of non-radial models, which focus only on the presence 

or absence of slacks in input/output space (see also Figure 4). These models generally assume equality for each 

weight related to input and output items, so that a characteristic feature for each input-output item for each DMU 

is that it does not take into account an efficiency-improvement projection. If these models wish to take into 

account unequal weights, we need some a priori information from decision or policy makers. Our DFM model is 

based on a radial type of model which is a completely different type of model, as this model employs optimal 

weights that are automatically and objectively computed by the CCR model.  This is a methodological advantage 

of this approach. 

 

Figure 4 Illustration of the non-radial model in input/output space 
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characteristic. A non-oriented model takes into account simultaneous adjustments of outputs and inputs. A 

representative improving projection model in a non-oriented space is proposed by Silva et al. (2003) and Frei et al. 

(1999).  These models can project the closest target onto an efficient frontier based on non-oriented models. 

Closest-targets models can find a shortest-distance projection which is an integrated simultaneous input and output 

improvement, as in Figure 5. 

 

Figure 5 Illustration of the closest-target model in input/output space 

   

In contrast, the DFM model can independently produce an input improvement projection and an output 

improvement projection as in Figures 1 and 2.  The DFM model can also produce a projection such that the 

balance in the distribution of shares from the input and output sides ensures a situation that achieves efficiency. 

Thus, this projection of our DFM model can overcome the above-mentioned challenge that one input or one 

output item will never bear (almost) the entire burden of improvement. More specifically, the input side and the 

output side contribute according to their initial levels 1 and θ*, implying respective shares θ*/(1+θ*) and 1/(1+θ*) 

in the improvement contribution. Clearly, the contributions from both sides equal (1-θ*)[θ*/(1+θ*)] and (1-

θ*)[1/(1+θ*)].  This approach clearly enhances the feasibility of this DEA model. 

 The DFM model is able to calculate either an optimal input reduction value or an optimal output increase 

value in order to reach an efficiency score of 1.000, even though in reality this might be hard to achieve for low-

efficiency DMUs. The DFM approach has been used as an operational stepping stone for a series of DEA 

variants, inter alia a Target-Oriented model (see section 3). 
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increase value in order to reach an efficiency score of 1.000, even though sometimes this may be a difficult task 

for less efficient DMUs. Therefore, we propose here a method that allows reference points that remain below the 

efficiency frontier.  On the other hand, DMUs which are close to (or exactly on) the efficient frontier might search 

for an appropriate reference point for a further improvement of their efficiency.  

Next, it is a new challenge to develop a Target-Oriented (TO) model nested within a DFM framework, based 
on the Super-efficiency model (Andersen and Petersen (1993): see Appendix A2), which originates from the 
original CCR-I model. The Super-Efficiency model based on a radial projection (CCR model) seeks to arrive at a 
ranking of all efficient DMUs. The efficiency scores from a Super-efficiency model are thus obtained by 
eliminating the data on the DMUo to be evaluated from the solution set. For the input model, this can then result in 
values which may be regarded, according to the DMUo, as a state of super-efficiency. These values are then used 
to rank the DMUs, and, consequently, efficient DMUs may then obtain an efficiency score above 1.000. An 
efficiency score and optimum weight for inefficient DMUs is in complete accordance with the standard CCR 
model. 

The TO approach adopted here comprises the following steps:  

 Step 1. The Target Efficiency Score (TES) for DMUo (hereafter TES0) is set arbitrarily by the decision - or 

policy - maker. Improving projections are categorized in three types, depending on the score of the TES 

as follows: 

• θ*<TES0 <1.000; Non-Attainment DFM projection (it does not reach the efficiency frontier) . 

 This makes sense for DMUs that are far below the efficiency frontier; 

• TES0 = 1.000; Normal DFM projection (it just reaches the efficiency frontier); 

• TES0 >1.000; Super-Efficient DFM projection (it is beyond the efficiency frontier). This makes 

 sense for DMUs that are already on the efficiency frontier. 

 

Step 2. Solve 
( ) ( )
( ) ( )∗

∗

∗

∗
∗∗

+
×−−

+
×−+

=

θ
θ

θ
θθθ

1
111

1
1

0

0

0
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TES .    (3.1) 

 

          Then, we get MPo, which is a Magnification Parameter of TESo. MPo assumes an intermediate role by 

adjusting the input reduction target and the output increase target in formulas (3.5) and (3.6) in order to ensure an 

alignment of the TES0 and DFM projection score for DMUo. 

 

Step 3. Solve the TO-DFM model using formulas (3.2)–(3.9); then, an optimal input reduction value and output 
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increase value to reach a TES0 can be calculated as follows: 
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An illustration of the TO-DFM model is given in Figure 6. 

 
Figure 6 Illustration of the Target-Oriented-DFM model in input space 
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From Figure 6, we notice that a value of TES0 = 1.000 is just equal to the normal DFM model using formulas 

(3.1)–(3.7). We also observe that the Non-Attainment DFM projection (θ*<TES0 <1) does not reach the 

efficiency frontier; thus, this is one of the improvement goal projections to reach a TES0 lower than 1.000. 

Additionally, a Super-Efficient DFM projection (TES0>1.000) offers an above 1.000 improvement level, which is 

relevant in particular for DMUs that are already close to the efficiency frontier. 

Figure 6 shows that the direction of the target setting is determined by the DFM model, whereas the degree to 

which the efficiency score is improved depends on the TES parameter set by the decision maker. The usual 

situation where DMUs try to improve their position incrementally is that the TES0 parameter will be lower than 1. 

We will next extend the above DEA variant by introducing inertia or lumpiness in one of the input factor (see 

Section 4). 

 

 

4.  Design of a Target-Oriented DFM model with fixed factors 

 

We now design a new version of the TO-DFM model that takes into account the presence of fixed factors (see 

Suzuki et al. 2011). A fixed factor is an input factor that cannot be flexibly adjusted in the short run. The efficiency 

improvement projection, which incorporates a fixed factor (FF) in a TO-DFM model, is presented as follows: 

The TO-DFM-FF approach adopted here comprises the following steps:  

 Step 1. The Target Efficiency Score (TES) for DMUo with a fixed factor (hereafter TES0
FF) is set arbitrarily by 

the decision - or policy - maker. Improving projections are categorized in three types, depending on the 

score of the TES, the same way as with the TO-DFM model. 
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          We then get MPo
FF, which is a Magnification Parameter of TESo

FF. MPo
FF assumes an intermediate role 

by adjusting the input reduction target and the output increase target in formulas (4.5) and (4.6) in order to ensure 

an alignment of the TES0
FF and a DFM projection score for DMUo. 
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where the symbols Dm∈  and Ds∈ refer to the set of ‘discretionary’ inputs and outputs; the symbols 

NDm∈  and NDs∈ refer to the set of ‘non-discretionary’ inputs and outputs. 

The meaning of functions (4.2) and (4.3) is to consider only the distance friction of discretionary inputs and 

outputs. The constraint functions (4.5) and (4.6) are incorporated in the non-discretionary factors for the efficiency 

gap. The target values for input reduction and output augmentation with a balanced allocation depend on all total 

input-output scores and fixed factor situations, as presented in Figure 7 in the case of TES0
FF =1.000 (i.e. 

MPo
FF=1.000). The calculated result of (4.5) will then coincide with the calculated result of (4.6).  
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Figure 7 Distribution of the total efficiency gap (in the case of TES0

FF =1.000 (MPo
FF=1.000)) 

 

Finally, the optimal solution for an inefficient DMUo can now be expressed by means of (4.10) - (4.13): 

 ∗∗−∗∗∗ −−= sdxx x
momomo , Dm∈ ;     (4.10) 

∗∗+∗∗∗ ++= sdyy y
sososo , Ds∈ ;     (4.11) 

 momo xx =∗∗ , NDm∈ ;      (4.12) 

 soso yy =∗∗ , NDs∈ .       (4.13)  

 

The slacks ∗∗−s , NDm∈  and ∗∗+s , NDs∈  are not incorporated in (4.12) and (4.13), because these factors 

are ‘fixed ’ or  ‘non-discretionary’ inputs and outputs, in a way similar to the Banker and Morey (1986) model. 

This approach will hereafter be described as the TO-DFM-FF approach. 

 

5.  An evaluation of energy-environment-economic efficiency for EU and A&A countries 

5.1 Database and analytical framework 

There is a vast difference in energy use, environmental quality, economic growth and demographic 

composition in many countries. It may be interesting to obtain new insights from a comparative study on energy- 

efficiency in such countries, which may provide lessons for national sustainability policies. From that perspective, 
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we have to look at input-output ratios as measures of efficiency or productivity, using the DEA framework 

sketched out above.  

We use for our analysis the following relevant input and output data from 2003 to 2012 for a set of  27 EU 

countries (Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech, Denmark, Estonia, Finland, France, Germany, 

Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, the Netherlands, Poland, Portugal, Romania, 

Slovakia, Slovenia, Spain, Sweden, and the UK),  and 20 ASEAN and APEC (A&A) countries (Australia, 

Brunei, Cambodia, Canada, Chile, China, Indonesia, Japan, Korea, Malaysia, Mexico, Myanmar, New Zealand, 

Peru, the Philippines, Russia, Singapore, Thailand, the USA, and Vietnam) to evaluate  and compare their energy-

environment-economic efficiency. The DMUs used in our analysis are listed in Table 1. 

 

Table 1 A list of DMUs 
No. EU No. EU 

 

No. A&A No. A&A 
1 Austria 15 Italy 28 Australia 38 Mexico 

2 Belgium 16 Latvia 29 Brunei 39 Myanmar 

3 Bulgaria 17 Lithuania 30 Cambodia 40 New Zealand 

4 Croatia 18 Luxembourg 31 Canada 41 Peru 

5 Cyprus 19 Netherlands 32 Chile 42 Philippines 

6 Czech 20 Poland 33 China 43 Russia 

7 Denmark 21 Portugal 34 Indonesia 44 Singapore 

8 Estonia 22 Romania 35 Japan 45 Thailand 

9 Finland 23 Slovak 36 Korea 46 USA 

10 France 24 Slovenia 37 Malaysia 47 Vietnam 

11 Germany 25 Spain 

  
12 Greece 26 Sweden 

13 Hungary 27 UK 

14 Ireland   

 

As shown in Table 1, we set out the DMUs as 27 EU countries and 20 A&A countries. We note that Lao 

People's Democratic Republic, Papua New Guinea, China Hong Kong and Taiwan are omitted in the list for 

reason of data restrictions. Malta is omitted in the list for a reason of too much small data. In our subsequent DEA 

context, we will focus on both input and output variables.  

 

For our comparative sustainability analysis of various countries, we consider two Inputs (I): 

(I1) Population (thousands) (Reference: UN Statistics Division); 

(I2) Energy Consumption (Peta Joule) (Reference: International Energy Agency), 
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while also two  Outputs (O) are incorporated: 

(O 1) GDP (at constant 2005 prices - hundred million US Dollars) (Reference: UN Statistics Division); 

(O 2) CO2 Emission (million tons) (Reference: International Energy Agency)- 

CO2 Emission is denoted in our study as a multiplicative inverse of the ‘bad’ output to make it a ‘good’ 

output (for details, see also Scheel (2001) and Seiford (2002)). 

 

In our application, we first employed the Super-Efficiency CCR model (see Appendices A1 and A2), while 

next the results were used to determine the CCR, DFM and TO-DFM-FF projections. Additionally, we applied 

the TO-DFM-FF model using Japan 2012 as a reference country for our benchmark experiment.  

 

5.2 Efficiency evaluation based on Super-Efficiency CCR-I model 

  The efficiency evaluation result for the 47 countries from 2003 to 2012 based on the Super-Efficiency CCR 

model is presented in Figure 8.  

From Figure 8, it can be seen that Luxembourg, Cyprus, Ireland, and Brunei may be regarded as super-efficient 

DMUs. It also can be seen that the efficiency scores of EU countries are higher on average than the A&A 

countries. We can also compare an average score between the EU and A&A countries, based on a two-sample T-

test (statistical significance test for differences in the average efficiency score between the EU and A&A countries), 

as shown in Figure 9.  From Figure 9, we notice that the gap between the average scores for EU and A&A 

countries has narrowed from 2003 to 2005, but after 2006, the gap has widened year by year. In particular, the gap 

in 2011 and 2012 shows a statistical significance (in Figure 9, * means: 5 significant at a 5% level). Given the 

above findings, it seems necessary to make a serious effort for the efficiency improvement of the energy-

environment-economic efficiency for APEC and ASEAN countries (see Section 5.3). 
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Figure 8 Efficiency scores based on the Super-Efficiency CCR-I model 

 

 

Figure 9 Average scores of EU and A&A countries, and T-test values 

* * 
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5.3 Efficiency improvement projection based on the CCR, DFM and TO-DFM-FF models 

  The results of an efficiency improvement projection based on the application of CCR and DFM models for 

inefficient A&A countries in 2012 are presented in Table 2 (θ** in Table 2 expresses the efficiency score after the  

improvement projection).  

In regard to Table 2, we note that the results of an efficiency improvement projection for CO2 may be difficult 

to understand as a consequence of the use of ‘inverse’ numbers (translating the ‘bad’ output into a ‘good’ output). 

And therefore, we have recalculated the results into normal numbers, as presented in Table 3. 

 
Table 2 Efficiency-improvement projection results of CCR, DFM, and TO-DFM-FF models (A&A 

countries) 

DMU Score
 I/O Data Difference % Difference % Difference %

Australia 0.612 0.644 (EU Ave level)

(FI)Population 23050.0 -8948.3 -38.8% -2262.6 -9.8% 0.000 0.0%
(I)Energy Consumption 5371.0 -2085.1 -38.8% -1850.7 -34.5% -174.151 -3.2%
(O)GDP 9253.4 0.0 0.0% 2228.7 24.1% 300.035 3.2%
(O)CO2 (inverse) 0.00259 1.5 56847.0% 1.0 38824.6% 0.000 0.0%
Cambodia 0.626 0.644 (EU Ave level)
(FI)Population 14865.0 -13532.7 -91.0% -13226.7 -89.0% 0.000 0.0%
(I)Energy Consumption 230.0 -85.9 -37.4% -52.8 -23.0% -3.135 -1.4%
(O)GDP 99.9 189.4 189.6% 255.8 256.1% 0.000 0.0%
(O)CO2 (inverse) 0.23981 0.0 0.0% 0.1 23.0% 0.003 1.4%
Canada 0.483 0.644 (EU Ave level)
(FI)Population 34838.0 -17994.4 -51.7% -3249.9 -9.3% 0.000 0.0%
(I)Energy Consumption 10514.0 -5430.7 -51.7% -5164.6 -49.1% -1880.593 -17.9%
(O)GDP 12941.9 0.0 0.0% 4506.1 34.8% 2314.865 17.9%
(O)CO2 (inverse) 0.00187 2.8 148344.7% 1.5 81630.8% 0.000 0.0%
Chile 0.271 0.644 (EU Ave level)
(FI)Population 17465.0 -13985.3 -80.1% -11989.0 -68.6% 0.000 0.0%
(I)Energy Consumption 1558.0 -1136.0 -72.9% -893.8 -57.4% -635.113 -40.8%
(O)GDP 1649.3 0.0 0.0% 946.2 57.4% 672.327 40.8%
(O)CO2 (inverse) 0.01286 0.0 66.4% 0.0 161.8% 0.000 0.0%
China 0.097 0.644 (EU Ave level)
(FI)Population 1377065.0 -1280474.3 -93.0% -1200913.3 -87.2% 0.000 0.0%
(I)Energy Consumption 121178.0 -109463.0 -90.3% -99813.4 -82.4% -89532.486 -73.9%
(O)GDP 45781.7 0.0 0.0% 37710.0 82.4% 33825.839 73.9%
(O)CO2 (inverse) 0.00012 0.6 487129.7% 1.1 888457.3% 0.000 0.0%
Indonesia 0.122 0.644 (EU Ave level)
(FI)Population 246864.0 -237842.2 -96.4% -230787.6 -93.5% 0.000 0.0%
(I)Energy Consumption 8942.0 -7847.8 -87.8% -6992.2 -78.2% -6085.349 -68.1%
(O)GDP 4276.1 0.0 0.0% 3343.7 78.2% 2910.062 68.1%
(O)CO2 (inverse) 0.00230 0.1 2315.1% 0.1 4203.6% 0.000 0.0%
Japan 0.711 0.750 (arbitrary level)
(FI)Population 127250.0 -36757.0 -28.9% -27895.2 -21.9% 0.000 0.0%
(I)Energy Consumption 18936.0 -5469.8 -28.9% -2110.3 -11.1% -692.874 -3.7%
(O)GDP 46953.6 0.0 0.0% 7926.2 16.9% 1718.044 3.7%
(O)CO2 (inverse) 0.00082 2.7 336289.2% 4.8 589089.6% 0.000 0.0%
Korea 0.370 0.644 (EU Ave level)
(FI)Population 49003.0 -30888.2 -63.0% -18198.5 -37.1% 0.000 0.0%
(I)Energy Consumption 11030.0 -6952.6 -63.0% -5813.3 -52.7% -4101.349 -37.2%
(O)GDP 11652.6 0.0 0.0% 5362.6 46.0% 4332.847 37.2%
(O)CO2 (inverse) 0.00169 1.8 104690.8% 1.5 88440.6% 0.000 0.0%
Malaysia 0.149 0.644 (EU Ave level)
(FI)Population 29240.0 -25053.5 -85.7% -21954.7 -75.1% 0.000 0.0%
(I)Energy Consumption 3401.0 -2893.2 -85.1% -2517.4 -74.0% -2120.415 -62.3%
(O)GDP 1984.3 0.0 0.0% 1468.8 74.0% 1237.145 62.3%
(O)CO2 (inverse) 0.00510 0.0 404.1% 0.0 777.3% 0.000 0.0%

1.000

Score(θ**) Score(θ**)

1.000

1.000

1.000

1.000

1.000

CCR model DFM model TO-DFM-FF model
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1.000 1.000

1.000

1.000
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1.000

1.000

1.000

1.000
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Table 2(continued) Efficiency-improvement projection results of the CCR, DFM, and TO-DFM-FF 
models (A&A countries) 

DMU Score
 I/O Data Difference % Difference % Difference %

Mexico 0.334 0.644 (EU Ave level)

(FI)Population 120847.0 -99132.7 -82.0% -88288.8 -73.1% 0.000 0.0%
(I)Energy Consumption 7888.0 -5254.4 -66.6% -3939.2 -49.9% -2500.020 -31.7%
(O)GDP 10292.1 0.0 0.0% 5139.7 49.9% 3261.960 31.7%
(O)CO2 (inverse) 0.00229 0.1 5717.0% 0.2 8621.9% 0.000 0.0%
Myanmar 0.131 0.644 (EU Ave level)
(FI)Population 52797.0 -52058.0 -98.6% -51497.7 -97.5% 0.000 0.0%
(I)Energy Consumption 639.0 -555.5 -86.9% -491.3 -76.9% -423.383 -66.3%
(O)GDP 230.2 0.0 0.0% 191.9 83.4% 174.281 75.7%
(O)CO2 (inverse) 0.08584 0.0 0.0% 0.1 62.1% 0.038 44.7%
New Zealand 0.505 0.644 (EU Ave level)
(FI)Population 4460.0 -2207.3 -49.5% -1389.9 -31.2% 0.000 0.0%
(I)Energy Consumption 794.0 -393.0 -49.5% -274.1 -34.5% -131.828 -16.6%
(O)GDP 1276.2 0.0 0.0% 419.6 32.9% 211.882 16.6%
(O)CO2 (inverse) 0.03111 0.1 306.3% 0.1 378.3% 0.000 0.0%
Peru 0.339 0.644 (EU Ave level)
(FI)Population 29988.0 -27442.0 -91.5% -26217.4 -87.4% 0.000 0.0%
(I)Energy Consumption 909.0 -600.7 -66.1% -448.5 -49.3% -281.624 -31.0%
(O)GDP 1197.6 0.0 0.0% 603.6 50.4% 379.006 31.6%
(O)CO2 (inverse) 0.02182 0.0 0.0% 0.0 7.0% 0.000 0.0%
Philippines 0.209 0.644 (EU Ave level)
(FI)Population 96707.0 -93643.4 -96.8% -91637.0 -94.8% 0.000 0.0%
(I)Energy Consumption 1782.0 -1410.4 -79.2% -1167.1 -65.5% -910.014 -51.1%
(O)GDP 1452.1 0.0 0.0% 951.0 65.5% 741.519 51.1%
(O)CO2 (inverse) 0.01258 0.0 49.6% 0.0 147.6% 0.000 0.0%
Russia 0.108
(FI)Population 143170.0 -127776.1 -89.3% -111111.0 -77.6%
(I)Energy Consumption 31677.0 -28271.0 -89.3% -26247.8 -82.9%
(O)GDP 9806.1 0.0 0.0% 7902.1 80.6%
(O)CO2 (inverse) 0.00060 1.4 240447.8% 1.6 257732.1%
Singapore 0.590 0.644 (EU Ave level)
(FI)Population 5303.0 -2173.5 -41.0% -1036.1 -19.5% 0.000 0.0%
(I)Energy Consumption 1049.0 -430.0 -41.0% -326.4 -31.1% -59.993 -5.7%
(O)GDP 1873.9 0.0 0.0% 483.0 25.8% 107.167 5.7%
(O)CO2 (inverse) 0.02010 0.2 1045.0% 0.2 929.0% 0.000 0.0%
Thailand 0.118 0.644 (EU Ave level)
(FI)Population 66785.0 -61645.2 -92.3% -57587.5 -86.2% 0.000 0.0%
(I)Energy Consumption 5299.0 -4675.6 -88.2% -4183.5 -78.9% -3661.454 -69.1%
(O)GDP 2436.1 0.0 0.0% 1923.3 78.9% 1683.290 69.1%
(O)CO2 (inverse) 0.00390 0.0 710.9% 0.1 1351.1% 0.000 0.0%
USA 0.605 0.644 (EU Ave level)
(FI)Population 317505.0 -125551.5 -39.5% 0.0 0.0% 0.000 0.0%
(I)Energy Consumption 89623.0 -35439.8 -39.5% -35337.8 -39.4% -3484.242 -3.9%
(O)GDP 141377.6 0.0 0.0% 34841.3 24.6% 5496.286 3.9%
(O)CO2 (inverse) 0.00020 28.4 14407875.2% 15.8 8040357.1% 0.000 0.0%
Vietnam 0.078 0.644 (EU Ave level)
(FI)Population 90796.0 -89043.9 -98.1% -87546.3 -96.4% 0.000 0.0%
(I)Energy Consumption 2715.0 -2502.5 -92.2% -2320.9 -85.5% -2126.349 -78.3%
(O)GDP 830.4 0.0 0.0% 709.9 85.5% 650.381 78.3%
(O)CO2 (inverse) 0.00700 0.0 53.9% 0.0 185.4% 0.000 0.0%
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Table 3 Efficiency-improvement projection results for CO2 in ‘normal’ numbers 

DMU Score (O)CO2
 (inverse)

(O)CO2 Difference % Difference % Difference %

Australia 0.612 0.002589 386.27 -385.592 -99.824% -385.278 -99.743% 0.000 0.000%
Cambodia 0.626 0.239808 4.17 0.000 0.000% -0.779 -18.680% -0.056 -1.345%
Canada 0.483 0.001874 533.74 -533.380 -99.933% -533.087 -99.878% 0.000 0.000%
Chile 0.271 0.012858 77.77 -31.020 -39.886% -48.063 -61.801% 0.000 0.000%
China 0.097 0.000122 8205.86 -8204.176 -99.979% -8204.936 -99.989% 0.000 0.000%
Indonesia 0.122 0.002296 435.48 -417.449 -95.859% -425.361 -97.676% 0.000 0.000%
Japan 0.711 0.000817 1223.30 -1222.936 -99.970% -1223.092 -99.983% 0.000 0.000%
Korea 0.370 0.001687 592.92 -592.354 -99.905% -592.250 -99.887% 0.000 0.000%
Malaysia 0.149 0.005105 195.89 -157.032 -80.164% -173.561 -88.601% 0.000 0.000%
Mexico 0.334 0.002295 435.79 -428.298 -98.281% -430.794 -98.853% 0.000 0.000%
Myanmar 0.131 0.085837 11.65 0.000 0.000% -4.464 -38.321% -3.599 -30.894%
New Zealand 0.505 0.031114 32.14 -24.230 -75.388% -25.421 -79.094% 0.000 0.000%
Peru 0.339 0.021825 45.82 0.000 0.000% -3.014 -6.578% 0.000 0.000%
Philippines 0.209 0.012585 79.46 -26.359 -33.173% -47.374 -59.620% 0.000 0.000%
Russia 0.108 0.000603 1659.03 -1658.340 -99.958% -1658.387 -99.961%
Singapore 0.590 0.020101 49.75 -45.405 -91.266% -44.915 -90.282% 0.000 0.000%
Thailand 0.118 0.003896 256.65 -224.999 -87.668% -238.963 -93.109% 0.000 0.000%
USA 0.605 0.000197 5074.14 -5074.105 -99.999% -5074.077 -99.999% 0.000 0.000%
Vietnam 0.078 0.007000 142.85 -50.001 -35.002% -92.792 -64.957% 0.000 0.000%

Data CCR DFM TO-DFM-FF

 
 

From Table 2, it appears that the DFM model clearly shows that a different – and likely more efficient – 

solution than the standard CCR projection is available for reaching the efficiency frontier. In this particular case, 

we could not identify a non-slack type (i.e., s-** and s+** are zero) country; this is particularly confirmed for the 

USA. For instance, the CCR projection in Table 2 and 3 shows that the USA should reduce its Population and 

Energy Consumption by 39.5%, together with an increase in the CO2 (inverse) of 14407875.2% (-99.999% in 

‘normal numbers’), in order to become efficient. On the other hand, the DFM results show that a reduction in 

Energy Consumption by 39.4%, together with an increase in the GDP of 24.6% and in the CO2 (inverse) of 

8040357.1% (-99.999% in ‘normal numbers’), is required to become efficient.  

The results of the efficiency improvement projection based on the TO-DFM-FF model for inefficient A&A 

countries are presented in Table 2 and 3. The parameter θ** in the results of TO-DFM-FF in Table 2 expresses a 

target efficiency score (TES) based on the EU average score level (0.644), while Japan is set at 0.750 as an 

arbitrary level, because the current score is already exceeded (0.711). The anomalous result of Russia was at the 

end regarded as an infeasible case that is not in agreement with the constraint function (4.7). More specifically, the 

regarded, reduction value for energy consumption (35973.710 Peta Joule) exceeded the current level (316677.000 

Peta Joule).  

The TO-DFM-FF model is able to present a more realistic efficiency-improvement energy plan, which we 

compared with the results of the DFM model in Table 2 and 3. For instance, the DFM results in Table 2 and 3 
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show that Korea should reduce its Population by 37.1% and its Energy Consumption by 52.7%, and increase its 

GDP by 46.0% and its CO2 level (inverse) by 88440.6% (-99.887% in ‘normal numbers’) in order to become 

efficient. On the other hand, the TO-DFM-FF results in Table 2 show that a reduction in Energy Consumption of 

37.2 %, and an increase in GDP of 37.2 % are required to reach the EU average level (0.644). Note also that 

Population is interpreted in our application as a fixed factor in the TO-DFM-FF and model.  

We also note that the efficiency improvement levels of CO2 in our CCR and DFM models seems to offer 

unrealistic outcomes, like 14407875.2%, (-99.999% in ‘normal numbers’), 8040357.1% (-99.999% in ‘normal 

numbers’), and 88440.6% (-99.887% in ‘normal numbers’) caused by the existence of ‘slack’, as a results of vast 

differences absolute numbers of relevant variables in the countries under consideration (e.g., Russia or the USA vs. 

Luxembourg or Cyprus).  On the other hand, our TO-DFM-FF results seem to offer more realistic outcomes than 

in the previous models. The TO-DFM-FF model provides policy-makers with practical and transparent solutions 

that are available in the DFM projection to reach the target efficiency level. These results provide a meaningful 

contribution to decision support and planning for the efficiency improvement of the countries’ energy-

environment-economic resources. 

 

5.4 Efficiency-improvement projection of the TO-DFM-FF model 

  In this subsection, we will use Japan 2012 as an illustrative case and point of reference, and present an 

efficiency-improvement projection result based on the TO-DFM-FF model. The 2012 efficiency value is 0.711 

(see Table 2). We now consider the steps to improve efficiency towards 0.750, 0.800, 0.850, 0.900, 0.950 and 

1.000. The resulting input reduction values and the output increase values based on the TO-DFM-FF model are 

presented in Figure 10.  

These results show that, if Japan implements an efficiency improvement plan with a TES amounting to 0.850, 

a reduction in Energy Consumption of 12.5% and an increase in GDP of 12.5% are required.  

Furthermore, the normal DFM results in Figure 10 show that Japan should reduce its Population by 21.9% and 
the Energy Consumption by 11.1%, and increase its GDP by 16.9% and the CO2 (inverse) with 589089.6% (-
99.983% in ‘normal numbers’ in Table 3) in order to become efficient. On the other hand, the TES=1.000 (TO-
DFM-FF) results in Figure 10 show that a reduction in Energy Consumption of 24.5%, and an increase in GDP 
of 24.5% would be required. From the above finding, we note that the TO-DFM-FF model is able to present a 
more realistic efficiency-improvement plan, compared with the normal DFM. Note also that Population is 
interpreted in the application as a fixed factor in the TO-DFM-FF model.  

Our new proposed TO-DFM-FF model can not only compute a stepwise projection that falls below the 1.000 
levels, but it is also able to compute an outcome just to reach the efficiency frontier (TES=1.000).  From this fact, it 
appears that the TO-DFM-FF model can produce a more realistic efficiency improvement projection than the 
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previous CCR, DFM and TO-DFM models. 

 
Figure 10 Efficiency-improvement projection results based on the TO-DFM-FF model (Japan 2012) 

 
 

 6. Conclusion 

In this paper, we have presented a new DEA methodology, the TO-DFM-FF model. Its feasibility was tested for 

improving energy-environment-economic efficiency for the EU, APEC and ASEAN countries; the new model 

was examined on the basis of real-world information on relevant indicators. This new analytical tool combines both 

flexibility in energy-environment-economic strategies, while considering also a fixed input constellation such as 

population. The results show that in many cases there is considerable scope for improvement along various strategic 

lines in the various countries under consideration.  

The results appear to offer a meaningful contribution to sustainable decision making and planning for an 

efficiency improvement in the energy-environment-economic sector in these countries. These findings are mapped 

out in a detailed way in the present study. This model has the potential to become a policy instrument that could 

offer great benefits for combined energy-environmental-economic decision making and planning at national or 

sectoral policy levels. An important caveat of the present approach is noteworthy, viz. large scale differences in 

relevant policy variables of the DMUs considered may cause flaws in the outcomes. 
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Appendix 

 

A1. Outline of DEA and Efficiency Improvement Projection  

     

   The standard Charnes et al. (1978) model (abbreviated hereafter as the CCR-input model) for a given DMUj 

),,1( Jj =  to be evaluated in any trial o (where o ranges over 1, 2 …, J) may be represented as the following 

fractional programming (FPo) problem: 

 (FPo)     
uv,

max   
∑
∑

=

m
mom

s
sos

xv

yu
θ  

s.t.      1≤
∑
∑

m
mjm

s
sjs
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yu
 ),,1( Jj =     (A.1) 

  0≥mv , 0≥su , 

where θ  represents an objective variable function (efficiency score); xmj is the volume of input m (m = 1,…, M) 

for DMUj(j = 1,…,J); ysj is the output s (s = 1,…,S) of DMU j; and vm and us are the weights given to input m and 

output s, respectively. Model (A.1) is often called an input-oriented CCR model, while its reciprocal (i.e. an 

interchange of the numerator and denominator in the objective function (A.1) with a specification as a 

minimisation problem under an appropriate adjustment of the constraints) is usually known as an output-oriented 

CCR model. Model (A.1) is obviously a fractional programming model, which may be solved stepwise by first 

assigning an arbitrary value to the denominator in (A.1), and then maximizing the numerator (see also Cooper et 

al. (2006) and Suzuki et al. (2010)). 

The improvement projection ( )ˆ ˆ,o ox y  can now be defined in (A.2) and (A.3) as: 

         ˆo ox x sθ ∗ −∗= − ;         (A.2) 

                ˆo oy y s+∗= + .         (A.3) 

These equations indicate that the efficiency of (xo, yo) for DMUo can be improved if the input values are 

reduced radially by the ratio ∗θ  and the input excesses ∗−s  are eliminated (see Figure A1).  

The original DEA models presented in the literature have focused on a uniform input reduction or on a uniform 

output increase in the efficiency-improvement projections, as shown in Figure A1 ( ∗θ =OC’/OC).  
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Figure A1 Illustration of original DEA projection in input space 

 

 A2. A Super-efficiency DEA Model 

 

   In a standard DEA model,  all efficient DMUs get by definition a score equal to 1, so that there is no logical 

way to differentiate between them. This problem has led to focused research to discriminate between efficient 

DMUs, in order to arrive at an unambiguous ranking, or even a numerical rating of these efficient DMUs, without 

affecting the results for non-efficiency. In particular, Andersen and Petersen (1993) developed a radial Super-

Efficiency model, while, later on, Tone (2002, 2003) designed a slacks-based measure (SBM) of super-efficiency 

in DEA. In general, a Super-Efficiency model aims to identify the relative importance of each individual efficient 

DMU, by designing and measuring a score for its ‘degree of influence’ if this efficient DMU is omitted from the 

efficiency frontier (or production possibility set). If this elimination really matters (i.e. if the distance from this 

DMU to the remaining efficiency frontier is large) and, thus, the firm concerned has a high degree of influence 

and outperforms the other DMUs, it gets a high score (and is thus super-efficient). Therefore, for each individual 

DMU a new distance result is obtained, which leads to a new ranking, or even a rating of all the original efficient 

DMUs. 

Anderson and Petersen (1993) have developed the Super-Efficiency model based on a radial projection 

(including a CCR model) to arrive at a ranking of all efficient DMUs. The efficiency scores from a super-

efficiency model are thus obtained by eliminating the data on the DMUo to be evaluated from the solution set. For 

the input model, this can then result in values, which may be regarded, according to the DMUo, as a state of super-

efficiency. These values are then used to rank the DMUs, and, consequently, efficient DMUs may then obtain an 

efficiency score above 1.000 (see also Suzuki et al. (2014)).  

The super-efficiency model based on a CCR-I model can now be written as follows: 
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where e is a unit vector (1,...,1), representing a utility factor for all elements.  
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