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Abstract. The focus of this study is on integration processes in European R&D 

by analyzing the spatio-temporal dimension of two different R&D 

collaboration networks across Europe. These networks cover different types of 

knowledge creation, namely co-patent networks and project based R&D 

networks within the EU Framework Programmes (FPs). Integration in 

European R&D – one of the main pillars of the EU Science Technology and 

Innovation (STI) policy – refers to the harmonisation of fragmented national 

research systems across Europe and to the free movement of knowledge and 

researchers. The objective is to describe and compare spatio-temporal patterns 

at a regional level, and to estimate the evolution of separation effects over the 

time period 1999-2006 that influence the probability of cross-region 

collaborations in the distinct networks under consideration. The study adopts a 

spatial interaction modeling perspective, econometrically specifying a panel 

generalized linear model relationship, taking into account spatial 

autocorrelation among flows by using Eigenfunction spatial filtering methods. 

The results show that geographical factors are a lower hurdle for R&D 

collaborations in FP networks than in co-patent networks Further it is shown 

that the geographical dynamics of progress towards more integration is higher 

in the FP network. 
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1  Introduction  

 

Today it is widely recognised that first, innovation processes are increasingly based on 

interaction, research collaborations and networks of various actors (see, for instance, Fischer 

2001, Powell and Grodal 2005)
1
, and, second, innovation is the key element for sustained 

economic growth of firms, industries, regions and countries (see, for example, Romer 1990)
2
. 

Based on these arguments, the main focus of the Europe 2020 Strategy is on research and 

innovation in order to achieve a new growth path that leads to a smart, sustainable and 

inclusive economy (European Commission 2011). In this context, the concept of the 

Innovation Union – one of the seven flagships scheduled in the Europe 2020 Strategy – is 

intended to improve conditions for innovation and knowledge diffusion to ensure that 

innovative ideas are efficiently turned into new products and services that create growth and 

employment (European Commission 2010). One of the main pillars of the Innovation Union 

is the realisation of an integrated European Research Area (ERA), defined as one explicit 

principal purpose to fulfil progress towards the Innovation Union. 

 

The concept of the European Research Area (ERA) refers to the objective to enable and 

facilitate “free circulation of researchers, knowledge and technology” across the countries of 

the EU, and, by this, stimulating integration processes in European R&D (see Commission of 

the European Union (CEU) 2008, p. 6). This policy goal is to be addressed by improving 

coherence of the European research landscape, thus removing barriers – such as geographical, 

cultural, institutional and technological impediments – for knowledge flows, knowledge 

diffusion and researcher mobility by a European-wide coordination of national and regional 

                                                
1  The literature on R&D networks underlines the crucial importance of cooperative agreements between universities, 

companies and governmental institutes, for developing and integrating new knowledge in the innovation process (see 

Powell and Grodal 2005). This is explained by considerations that innovation nowadays takes place in an environment 

characterised by uncertainty, increasing complexity and rapidly changing demand patterns in a globalised economy. 

Organisations must collaborate more actively and more purposefully with each other in order to cope with increasing 

market pressures in a globalizing world, new technologies and changing patterns of demand. In particular, firms have 

expanded their knowledge bases into a wider range of technologies (Granstand 1998), which increases the need for more 

different types of knowledge, so firms must learn how to integrate new knowledge into existing products or production 

processes (Cowan 2004). It may be difficult to develop this knowledge alone or acquire it via the market. Thus, firms form 

different kinds of co-operative arrangements with other firms, universities or research organisations that already have this 

knowledge to get faster access to it. 

 
2  The theory of endogenous growth, and the geography-growth synthesis both consider that economic growth and spatial 

concentration of economic activities emanate from localised knowledge diffusion processes, in particular transferred via 

network arrangements between different actors of the innovation system (see, for instance, Lucas 1988, Grossman and 

Helpman 1991). 

http://www.dict.cc/englisch-deutsch/principal.html
http://www.dict.cc/englisch-deutsch/purpose.html


 2 

 

research activities and policy programmes, including a considerable amount of jointly-

programmed public research investment (see Delanghe et al. 2009). 

  

To gain insight into the nature of integration processes in European R&D, there is urgent need 

for analysing the geographical dimension of R&D networks across Europe from a 

longitudinal perspective. The geography of such networks has – from a static perspective – 

attracted increasing interest in Regional Science and Economic Geography in the recent past. 

While from its beginning, the measurement of such phenomena has faced numerous 

problems
3
, the empirical investigation of knowledge flows and R&D collaborations has 

significantly improved during the 1990s by using new indicators such as patent citations (see, 

for instance, the pioneering study by Jaffe et al. 1993, Fischer et al. 2006), co-publications 

(see, for instance, Ponds et al. 2009, Hoekman et al. 2010) or project based R&D networks 

within the FPs (see Scherngell and Barber 2009 and 2011), and by introducing new methods, 

in particular new spatial econometric techniques (see, for instance, Anselin et al. 1997, 

LeSage et al. 2007). Recent studies focus on the structure of knowledge flows by adopting a 

spatial interaction modelling perspective (see, for instance, Ponds et al. 2007, Scherngell and 

Barber 2009), employing a social network analysis perspective (see, for instance, Breschi and 

Cusmano 2004, Barber et al. 2011), or a combination of both (see Barber and Scherngell 

2011).  

 

However, as these studies just provide a static picture on the geography of R&D 

collaborations, novel questions arise – both in theoretical and empirical research as well as in 

a European policy context – regarding R&D network structures and its dynamics. Concerning 

the particular focus on integration processes in European R&D, the evolution of different 

kinds of separation effects over time – such as geographical, technological, institutional or 

cultural barriers – that determine R&D collaboration networks is of crucial interest. Thus, this 

study shifts emphasis to the investigation of the geographical dynamics of two different types 

of R&D collaboration networks across Europe, namely co-patent networks and project based 

R&D networks within the European Framework Programmes (FPs). We take these types of 

R&D collaboration networks to analyse integration processes in European R&D over time 

                                                
3 “Knowledge flows are invisible, they leave no paper trail by which they may be measured and tracked” states Krugman 

(1991, pp. 153), pointing to difficulties in finding data on knowledge diffusion with respect to the geographical and 

temporal location of such processes. 
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from two different angles, shifting attention to a comparison of European integration 

processes in these networks. 

 

By this, the study addresses one of the major drawbacks of the current empirical literature: the 

lack of a longitudinal and comparative perspective of distinct R&D collaboration networks. 

Some exceptions are the studies of Maggioni and Uberti (2009), Hoekman et al. (2010), 

Hoekman et al. (2012) and Scherngell and Lata (2012). Hoekman et al. (2010) and Scherngell 

and Lata (2012) investigate the ongoing process of European integration by determining the 

impact of geographical distance and territorial borders on the probability of research 

collaborations between European regions. By analysing co-publication and FP network 

patterns and trends, the authors show that geographical distance has a negative effect on co-

publication activities and FP cooperation, while for the FP networks this effect decreases over 

time. The study of Maggioni and Uberti (2009) focuses on the structure of knowledge flows 

by analysing four distinct collaboration networks, including co-patenting. Hoekman et al. 

(2012) focus on the effect of participation in FP networks on subsequent international 

publications, showing that the FPs indeed positively influence international co-publications, 

and, by this, seem to enhance integration across Europeans research systems.   

 

The current study intends to complement the picture drawn in these studies, by shifting 

attention to a longitudinal and comparative perspective on two different R&D networks across 

Europe. The objective is to identify and compare the evolution of geographical, technological, 

institutional or cultural effects that influence the probability for collaboration activities in the 

different collaboration networks, and provide direct evidence on integration processes in 

European R&D from different angles. We adopt a regional perspective that is an appropriate 

approach to observe different R&D collaboration networks in geographical space (see, for 

instance, Hoekman et al. 2010, Scherngell and Barber 2009) over the time period 1999-2006. 

The study employs a Poisson spatial interaction modelling perspective to address these 

research questions. We adjust the spatial interaction models by accounting for spatial 

autocorrelation issues of flows by means of Eigenvector spatial filtering (see Chun 2008, 

Scherngell and Lata 2012). 

 

The paper is organised as follows. Section 2 sets forth the conceptual background of the study 

with a special focus on ERA, before Section 3 reflects on the different types of R&D 

collaboration networks under consideration. Section 4 describes the empirical setting and the 
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data, accompanied by some descriptive statistics and exploratory spatial data analysis. Section 

5 specifies the empirical model in form of a panel version of the spatial interaction modelling 

framework that is used to identify the evolution of separation effects influencing the 

probability of cross-region collaboration activities in the distinct networks. Section 6 presents 

the modelling results, before Section 7 closes with a summary of the main results and some 

conclusions in a European policy context.  

 

 

2  The ERA goal of progress towards more integration in European R&D 

 

One significant turning point in the EU Science, Technology and Innovation (STI) policy was 

the design of the concept of the European Research Area (ERA) presented at the Lisbon 

Council in the year 2000, rooted in the increasing awareness that European research activities 

suffer from diverse and fragmented national research systems (Boyer 2009). The overall goal 

of ERA is to overcome fragmentation in the European research system and to address the 

establishment of an ‘internal market’ for research across Europe, where researchers, 

technology and knowledge are supposed to circulate freely (see Delanghe et al. 2009, 

European Council 2000). The ERA green paper (CEC 2007) underlines the overall objectives 

of the Lisbon strategy, emphasising that the future European science and research landscape 

should be characterised by an adequate flow of competent researchers with high levels of 

mobility between institutions by integrated and networked research infrastructures and 

effective knowledge sharing, notably between public research and industry. This requires the 

reduction of geographical, cultural, institutional, and technological obstacles in order to 

generate research collaboration across European regions and countries (see, for instance, 

Breschi and Malerba 2009, Hoekman et al.2012, Scherngell and Lata 2012). 

 

The Framework Programmes (FPs) of the European Commission (EC) constitute the main 

instrument to achieve this goal, shifting emphasis on supporting and stimulating collaborative 

R&D activities between innovating organisations across Europe, in particular firms and 

universities. At the same time, regional and national research policies deal with similar issues 

as reflected by a growing awareness among national policy makers that national efforts are 

often insufficient to keep pace in the international innovation competition. In this context the 

European Council underlined the importance of cross border cooperation for the achievement 

of these objectives and put collaborative R&D activities at the centre of its strategy (Guzzetti 

http://www.dict.cc/englisch-deutsch/insufficient.html
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2009). Svanveldt (2009) highlights the crucial importance of cross-border cooperation as 

instrument for adequately dealing these challenges. 

 

During the last decade, the ERA concept has been developed further (Luukkonen 2010), 

becoming strong political support in the context of the conception of the so-called Innovation 

Union (European Commission 2010). As one of the seven flagships scheduled in the Europe 

2020 Strategy, the Innovation Union is intended to improve framework conditions for 

innovation and knowledge diffusion. Moreover one of the main objectives of the Innovation 

Union is to “... quickly taking all measures necessary for a well functioning and coherent 

European Research Area in which researchers, scientific knowledge and technology circulate 

freely, in which RDI investments are less fragmented and the intellectual capital across 

Europe can be fully exploited” (European Commission 2010, p.7). In order to tackle these 

challenges, specific commitments have been introduced. One of these commitments is to 

complete the ERA by 2014 with the goal to remove the remaining obstacles for collaborative 

knowledge production and consequently to foster the integration in the European research 

landscape (European Commission 2010).  

 

With this in mind, the present study aims to evaluate the progress towards more integration in 

European R&D – as formulated in the concept of ERA and the Innovation Union. To gain 

empirical insight into the nature of such integration processes across Europe, the study 

focuses on a broad spectrum of R&D collaboration activities, namely co-patent networks and 

project based R&D networks within the FPs. In estimating the evolution of separation effects 

that capture the above mentioned obstacles for collaborative knowledge production across 

Europe, the analysis will show distinct mechanisms of integration processes corresponding to 

the different types of R&D networks. The section that follows reflects on the two different 

networks types under consideration in some detail.  

 

 

3  A Network perspective on Integration in European R&D  

 

R&D networks – defined as sets of organisations performing joint R&D activities – attracted 

burst of attention in the recent past as essential element of modern knowledge production and 

innovation processes (see, for instance, Castells 1996). In the current study, we take such 

network arrangements across Europe to analyse integration processes in European R&D, 
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focusing on two different types of networks that capture different types of knowledge 

production processes. We focus on R&D networks in the form of joint patenting, resulting in 

co-patents and project based R&D networks within the FPs. 

 

Co-patent networks mainly reflect research collaborations that are related to applied 

knowledge generation (see, for instance, Makri et al. 2011) focusing on the development of 

marketable innovations and industry research activities (Maggioni et.al 1999, Götze 2011). 

Patents represent a well established indicator of knowledge generation activities and are 

widely used in empirical studies on knowledge flows (see, for instance, Jaffe et al. 1993, 

Fischer et. al 2006). A co-patent is defined as a patent invented by at least two inventors from 

two different organisations. Therefore, it represents knowledge exchange across actors within 

an inventor network in the process of patenting an invention (see, for instance, Ejermo and 

Karlsson 2006, Ter Wal and Boschma 2008, Goetze 2011).  

 

The second type of the R&D networks refers to project based R&D collaboration within the 

FPs. While co-patent networks mainly reflect applied research, project based FP networks 

involve basic and applied research aspects, given by the fact that publications and patents may 

be outputs of FP networks. In the FP network, the research collaboration is constituted by 

joint R&D projects conducted by organisations distributed across Europe. The FPs are the 

main political instrument to support pre-competitive collaborative R&D within the European 

Union. The key objectives are, first, to strengthen the scientific research and technological 

development in the scientific landscape and by this to foster the European competitiveness, 

and, second, to promote research activities in support of other EU policies (Maggioni et.al 

2009)
4
.  

 

FP projects share specific characteristics (see for example Roediger-Schluga and Barber 2006, 

Breschi and Malerba 2009). First, they are all promoted by self-organised consortia and have 

distinct partners – for instance individuals, industrial and commercial firms, universities, 

research organisations, etc. – that are located in different EU members and associated states. 

Second, they focus primarily on pre-competitive R&D projects. Third, they are characterised 

by less market orientation and longer development periods (Polt et. al 2008).  

                                                
4  Since their introduction in 1984, different thematic aspects and issues of the European scientific landscape have been 

addressed by the FPs (see Breschi and Malerba 2009). Although the FPs have undergone different changes in their 

orientation during the past years, their fundamental rational remained unchanged (Roediger-Schluga and Barber 2006). 
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Given the properties of the two different network types under consideration, it may be 

hypothesised that integration processes for these network types differ. This may, on the one 

hand, be related to the different knowledge generation processes in these networks, on the 

other hand, to governance rules and policy programmes implemented by the EC influencing 

the resulting network structures. The spatial interaction models (see Section 5) will enable us 

to proof this hypothesis, and disclose distinct spatial characteristics and collaboration patterns 

in the networks under consideration, and, by this, drawing a more detailed picture on 

integration processes in European R&D.  

 

 

4  Data and descriptive statistics 

 

In our empirical analysis we aim to investigate integrations processes in European R&D 

networks focusing on two different types of collaboration networks, that is FP collaboration 

networks and co-patent networks. The EUPRO database is used to capture project based R&D 

networks within the FPs, while the Regpat database is taken to construct co-patent networks. 

The EUPRO database currently comprises information on more than 60,000 research projects 

funded by the EU FPs and all participating organisations. A network link is given between 

two organisations when they conduct a joint research project in the FPs. We use information 

on the geographical location in form of the city to trace the geographical dimension of the 

network
5
. The Regpat database contains information on patent applications from various 

patent offices worldwide. It is provided by the OECD and contains, among many others, all 

patent applications issued at the European Patent Office (EPO), and the national patent offices 

of the European countries. A network link between two organisations is given when inventors 

from two different organisations appear on a patent application. We use information on the 

inventor address of an EPO patent application to trace the origin of the invention.  

 

The European coverage is achieved by using i, j = 1, …, n NUTS-2 regions
6 

of the 25 pre-

2007 EU member-states as well as Norway and Switzerland.We extract n-by-n collaboration 

                                                
5 EUPRO has been constructed by AIT by substantially standardising raw data on EU FP research collaborations obtained 

from the CORDIS database. Standardisation included identification of unique organisation names (i.e. entries are assigned 

to the respective unique organisation name), identification of unique organisation types, etc (see Roediger-Schluga and 

Barber 2006 for details on the database). 

6  Although substantial size differences and interregional disparities of some regions exist, these units are widely recognized 

to be an appropriate level for modelling and analysis purposes (see, for example, LeSage and Fischer 2012).  
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matrices for each time period t =1,... , T, both for the FP- and for the co-patent network, by 

aggregating the number of individual collaborative activities at the organisational level in 

time period t to the regional level. This leads to the observed number of R&D collaborations 

yijt between two regions i and j in time period t in the respective network, that is the FP and 

the co-patent network. The resulting regional collaboration matrix Yt for the two networks
7
 for 

a given year t contains the collaboration intensities between all (i, j)-region pairs, given the  

i = 1,... , n regions in the rows and the j = 1,... , n regions in the columns. We use a full 

counting procedure
8
 for the construction of our collaboration matrices (see, for example, Katz 

1994). 

  

Figure 1 illustrates the spatial distribution of the cross-region R&D collaborations in the FP- 

(Figure 1a) and the co-patent network (Figure 1b) across Europe. In the spatial network maps, 

the sizes of the nodes are proportional to the number of regional participations in the two 

distinct networks. The darkness of the lines corresponds with the number of joint R&D 

collaborations between two regions, i.e. the darker the higher the interaction intensity. It is 

shown that the spatial structures of the distinct networks differ markedly. The most striking 

difference concerns the fact that the international collaboration activity is much higher in the 

FP network than in the co-patent network. In the latter, R&D collaborations are widely 

confined within national boundaries, while such boundaries seem to play a minor role for the 

structure of the FP network. Furthermore, the intra-regional collaboration intensity seems 

much higher in the co-patent network than in the FP network, pointing to the geographical 

localisation of the co-patents within NUTS-2 regions, while the cross-region collaboration 

intensity is much higher in the FP network. Concerning the spatial distribution of the regions 

with high intra-regional co-patent activities, a high intensity can be found for regions 

belonging to the traditional industrial core of Europe (see Hoekman et al. 2012), also referred 

to as the European ‘blue banana’ (Brunet 2002), while the participation within the FP network 

seems to be spatially more dispersed.  

 

                                                
7  Note that we do not distinguish between the FP network and the co-patent in the formal description of data as well as the 

modelling appraoch in the section that follows.  

8 For a project with, for example, three different participating organizations a, b and c, which are located in three different 

regions, we count three links (from a to b, from b to c and from a to c). 
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Figure 1: Spatial  distribution of the cross-region R&D networks for the year 2006. (a): R&D collaborations within the FP-

network. (b): R&D collaborations within the co-patent network. 

 

However, both networks seem to be spatially concentrated in some European regions that 

show high collaboration intensity. In this context the question arises, whether a spatial 

clustering of interaction patterns in the two networks can be observed, and which network 

shows a higher degree of spatial clustering, also referred to as spatial autocorrelation of flows 

(see, for instance, Berglund and Karlstrom 1999). Spatial autocorrelation of flows is, for 

example, when flows from a particular origin may be correlated with other flows that have the 

same origin, and, similarly, flows into a particular destination may be correlated with other 

flows that have the same destination (Scherngell and Lata 2012). In our case, this means that 

the intensity of R&D collaborations from an origin region i to a destination region j may be 

correlated with the intensity of R&D collaborations from the same origin i to another 

destination j, or vice versa. Such a situation is both interesting from the perspective of our 

research question on integration in European R&D, namely by assessing whether such R&D 

collaborations are statistically concentrated to a geographical core of regions that are located 

nearby to each other. From a theoretical perspective the spatial autocorrelation of R&D 

collaboration flows may be explained by the assumption that the collaboration behaviour of 

one region influences the collaboration behaviour of neighbouring regions because – as 

described in various empirical studies – contiguity of regions may induce knowledge flows 

between them, to them, and from them, and, thus, evoke the transfer of information on 

potential collaboration partners that are located further away (Scherngell and Lata 2012)
9
.  

 

                                                
9 To give an example, if region A has many collaborations with region B (that is no neighbour of region A), region A may 

influence a neighbouring region C also to collaborate with region B due to information flows between region A and region 

C, in particular flows of ‘know who’ type information (see Cohen and Levinthal 1990).  

a b 
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In order to test for the existence of spatial autocorrelation of flows, we calculate a Moran´s I 

test for spatial dependence as widely used in exploratory spatial data analysis (see, for 

instance, Griffith 2011). For our empirical analysis, the Moran´s It test for a time period t is 

calculated as by 

 

t t
t

t t

I 
*

y'W y

y'y
               

(1) 

 

where yt is a vector of our observed collaboration flows at time t with N=n
2
 elements  

(yijt) = (y11t, ..., y1nt, y21t, ..., y2nt, ..., yn1t, ..., ynnt), and W
*
 is defined by WW where W is the 

n-by-n spatial weights matrix and   denotes the Kronecker product. For W, we set  

 

( )

(1) (1)1 if

0 otherwise

iij ig

ij

s s
w

 
 
                         

(2) 

 

where sij
(1)

 measures the great circle distance between the economic centers of two regions i 

and j, and g(i) denotes the g-nearest neighbour of i. We define g = 5, as used in various 

empirical studies dealing with European regions (see, for instance, Parent and LeSage 2012). 

The respective Moran´s I statistics for the years 1999-2006 are reported in Table 1. The 

results are most often significant pointing to substantial spatial autocorrelation of R&D 

collaborations in both networks under consideration, i.e. a high number of flows is correlated 

with flows that come from nearby origins, and going into nearby destinations. However, the 

degree of spatial dependence is much higher for the co-patent network as has been expected 

considering the spatial distribution of the flows that are visualised in Figure 1. Furthermore, 

the Moran´s I for the FP network shows a decreasing trend, while for the co-patent network 

no time trend can be observed, pointing to differences in integration processes for the two 

network types. This is one particular point to be tested in the empirical model that is 

introduced in the section that follows, disclosing the influence of different exogenous 

variables that may explain these spatial collaboration patterns. In this context, the existence of 

spatial autocorrelation also bears important implications in a modeling context, since 

estimates may be biased neglecting spatial autocorrelation issues of flows (see, for instance, 

Fischer and Griffith 2008, LeSage and Pace 2008, Scherngell and Lata 2012)  
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Table1. Spatial autocorrelation of R&D collaboration in two distinct networks (1999-2006) 

 Moran´ I  

1999 2000 2001 2002 2003 2004 2005 2006 

FP- Network 0.016* 0.006* 0.003* 0.000 -0.001 0.007* -0.009 -0.001 

Co- Patent Network 0.136* 

 

0.120* 

 

-0.132* 

 

0.144* 

 

-0.139* 

 

0.153* 

 

0.146* 

 

-0.147* 

 
*significant at the 0.001 significance level, 

 

   

5  The empirical model 

 

This section shifts direct attention to the modelling approach used to address the basic 

research question of the study that is to estimate how specific separation effects influence the 

variation of cross-region R&D collaborations in two distinct collaboration networks over 

time, and, by this, providing direct evidence on distinct integration processes in different 

types of R&D. To address this question, we employ a spatial interaction modelling 

approach
10

. In implementing a panel version of the spatial interaction model, we are able to 

identify time effects that are necessary to observe potential integration processes of the 

networks over the time period 1999-2006. In what follows we will specify the panel version 

of the spatial interaction model, an extension accounting for spatial autocorrelation issues of 

flows, and describe the independent variables of the model.  

The panel version of the spatial interaction model to be estimated  

Let us denote Yijt as a random dependent variable corresponding to observed R&D 

collaborations yijt within the FP- or the co-patent network between origin i (i = 1, ... , n) and 

destination j ( j = 1, ... , n) at time t (t = 1, ... , T) . As in the previous section, we do not 

distinguish between the two networks in the formal model presentation; our basic model is 

given by    

 

|ijt ijt ijt ijtY y       i, j = 1, ..., n;   t = 1, ..., T (3) 

 

                                                
10 Spatial interaction models are widely used for modelling origin-destination flows data and were used to explain different 

kinds of flows, such as migration, transport or communication flows, between discrete units in geographical space (see, for 

instance, Sen and Smith 1995, LeSage and Fischer 2010 among many others).  
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where ijt  denotes some mean expected interaction frequency between origin i and destination 

j at time t, 
ijt  some disturbance term about the mean with the property | 0ijt ijtE y    . As in 

classical spatial interaction theory (see, for instance, Fischer and Wang 2011), we model the 

mean interaction frequencies 
ijt

 
between origin i and destination j at time t by some origin 

function Oit which characterizes the origin i of interaction in time period t, some destination 

function Djt which describes the destination j of interaction in time period t, and some 

separation function Sijt which accounts for the separation between an origin region i and a 

destination region j in time period t. Then we use a multiplicative relationship for our basic 

model, given by 

 

ijt it jt ijtO D S                  i, j = 1, ..., n;   t = 1, ..., T (4) 

 

where 

 

1
it itO o     i, j = 1, ..., n;   t = 1, ..., T (5) 

2

jt jtD d
    i, j = 1, ..., n;   t = 1, ..., T (6) 

 

( )

1

exp .
K

k

ijt k ijt

k

S s


 
  

 
                      i, j = 1, ..., n;   t = 1, ..., T (7) 

  

oit and djt are origin and destination variables, ( )k

ijts are K (k = 1, ..., K) separation variables that 

are introduced below. α1, α2  and ßk  are parameters to be estimated.  

 As has come into fairly wide use for spatial interaction models, we assume (Yij) ~ Poisson 

due to the true integer non-negative count nature of our R&D collaboration flows (see, for 

instance, Cameron and Trivedi 1998, Long and Freese 2001, Fischer et al. 2006, Scherngell 

and Barber 2009). The resulting panel version of the Poisson spatial interaction model is 

given by, 

 

    ( )

1 2

1

exp log log + 
K

k

ijt it jt k ijt ij

k

o d ß s   


 
   

 
  (8) 

 

where ij  denotes the unobserved individual specific effect, also referred to as the one-way 

error component model (see Baltagi 2008). The random term ij  is time invariant but varies 

across all (i, j)-region pairs. In our case  accounts for region-pair specific effects that are ij
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not included in the model. We assume the 
ij  to be correlated across our time periods for the 

same  

(i, j)-region pair, i.e. we follow a random effects specification, and integrate out the random 

effect 
ij  of the joint probability  11

Pr , ...,
T

ij ijTt
y y

  by obtaining 
 

     1 1 1Pr , ..., Pr , ..., , Pr , ..., | ( ) .ij ijT ij ijT ij ij ij ijT ij ij ijy y y y d y y g d               (9) 

 

Note that this is the same approach used in models for event counts to condition the 

heterogeneity out of the Poisson model to produce the Negative Binomial model (see Baltagi 

2008), i.e. when (Yij) ~ Poisson with mean
ijt

 
as given by Equation (8), and exp(

ij ) ~ 

Gamma, then our random effects Negative Binomial spatial interaction model to be estimated 

is  

 

 
   

   
  1

1

11

1

11
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( ) !
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T

ijtt

T

ijtt

T Ty

ijt ijttt y

ij ijT i i
y

T T

ijt ijttt

y
y y Q Q

y

  

  










 

 
 
 





        (10) 

with 

 

1

i T

ijtt

Q


 





         (11) 

 

where (.) denotes the Gamma distribution and   its variance. Parameter estimation is 

achieved via maximum likelihood estimation procedures (see Cameron and Trivedi 1998).  

 

Accounting for spatial autocorrelation and time effects 

Given the results of the spatial autocorrelation analysis of the previous section, it can be 

assumed that spatial dependence among our collaboration flows may lead to biased estimates. 

Thus, we re-specify our panel version of the Negative Binomial spatial interaction model by 

accounting for spatial autocorrelation issues as well as by introducing time effects enabling us 

to infer on time trends concerning the evolution of collaboration patterns in the two networks.  
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As noted by Chun (2008), maximum likelihood estimation assumes that all observations, in 

our case collaboration flows in our two networks under consideration, are mutually 

independent. A violation of this assumption may be in particular induced by spatial 

autocorrelation of flows leading to incorrect inferences due to inconsistence of the standard 

errors, and, thus, unrealistic significances (Chun 2008, Griffith 2009)
11

. We follow Scherngell 

and Lata (2012) who apply a spatial filtering method to filter out spatial autocorrelation of 

residual flows in a Negative Binomial spatial interaction context. The essence of the spatial 

filtering approach is to extract eigenvectors from a modified spatial weights matrix that serve 

as spatial surrogates for omitted spatially autocorrelated origin and destination variables (see 

Griffith 2009 and 2011).  These proxy variables are extracted as n eigenvectors
12

 from the 

modified spatial weights matrix of the form  1 1( ) ( )T T

n n
 I 11 W I 11 with I denoting the 

n-by-n identity matrix, 1 is an n-by-1 vector of one’s 1
T
 its transpose, and W the n-by-n spatial 

weights matrix, as defined by Equation (2). The eigenvectors can be interpreted as synthetic 

map variables that represent specific natures and degrees of potential spatial autocorrelation 

(Chun 2008, Griffith 2003). 
 

 

As noted by Chun and Griffith (2011) it is not appropriate to use the full set of En 

eigenvectors for the construction of the spatial filter variables. Further, we face a situation 

where Eigenvectors have to be selected for each time period due to the panel version of the 

spatial interaction model (Chun 2011, Patuelli et al. 2011). We follow Patuelli et al. (2011) 

and select in a first step a subset of distinguished eigenvectors on the basis of their Moran´s I 

values. We follow Fischer and Griffith (2008) and extract those Eigenvectors Em that show a 

higher Moran´s I value than 0.25. In a second step, it is necessary to adapt these Eigenvectors 

to our spatial interaction framework; origin candidate eigenvectors are drawn from m1 E  

                                                
11 One way to capture spatial autocorrelation of flows is the use of spatial autoregressive techniques (LeSage and Pace 2009). 

An alternative approach is the use of spatial filtering methods. The key advantage of the spatial filtering approach is that it 

can be applied to any functional form and thus, does not depend on normality assumption (Patuelli et al. 2011). 

Consequently, we prefer the spatial filtering approach over spatial autoregressive model as we are dealing with a Poisson 

spatial interaction framework.  

12 The extracted eigenvectors, labelled as En, have several characteristics. First, as shown by Griffith (1996), each extracted 

eigenvector relates to a distinct map pattern that has a certain degree of spatial autocorrelation. Second, the selected 

eigenvectors are centered at zero due to the pre and post multiplication of W by the standard projection Matrix 1
( )

T

n
I 1 1 . 

Third, the modification of W ensures that the eigenvectors provide mutually orthogonal and uncorrelated map patterns 

ranging from the highest possible degree of positive spatial correlation to highest possible degree of negative spatial 

correlation as given by the Moran’s I (MI). (Griffith 2003, Chun, and Griffith 2011). Hence, the first extracted eigenvector 

E1 is the one showing the highest degree of positive spatial autocorrelation that that can be achieved by any spatial 

recombination; the second eigenvector E2 has the largest achievable degree of spatial autocorrelation by any set that is 

uncorrelated with E1 until the last extracted eigenvector En will maximize negative spatial autocorrelation (Griffith 2003).   
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and the destination candidate eigenvectors are obtained from m E 1 . In a third step, these 

Eigenvectors are added as explanatory variables to T=9 cross-section versions of the Negative 

Binomial spatial interaction model, from which statistically significant Eigenvectors are 

identified. In a fourth step, we determine those eigenvectors that are significant over all time 

periods and define the resulting set of common origin and destination eigenvectors, Eq and Er, 

respectively, as our time invariant spatial filter
13

. The time invariant spatial filter covers the 

total number of space-time observations, and account for spatial dependence of flows in our 

origin and destination data. 

 

We add the selected origin filters Eq and destination filters Er as regressors to our panel 

version of the Negative Binomial spatial interaction model. Further we introduce the subset of 

Zt time dummies in order to capture aggregate year effects (Woodridge 2008)
14

. This leads to 

the spatially filtered panel version of the Negative Binomial spatial interaction model 

accounting for time effects, given by re-specifying the conditional mean 
ijt

 
so that 

  

    ( )

1 2

1 1 1 1

exp log log
Q R K T

k

ijt q q it r r jt k ijt t t ij

q r k t

E o E d ß s Z     
   

 
       

 
    ν

   

(12) 

 

The coefficients to be estimated for the spatial filters are 
q and r , tν  is the associated 

parameter for the time dummy at time t. 

 

Independent variables 

We use one origin measure, and one destination measure for the FP network model and the 

co-patent network model.. For the model on the FP networks, the origin variable ito  is 

measured in terms of organizations participating in joint FP projects in region i, while the 

destination variable jtd  denotes the number of organizations participating in joint FP projects 

                                                
13  We use an time invariant specification of the spatial filter as we assume an time invariant underlying spatial process.   

14 In order to determinate changes of our separation variables we include interaction terms (see, for an overview, Wooldridge 

2008). In this procedure, variables of interest, for example R&D (see, Griliches 1984), interact with time dummy variables 

and illustrate if effects changed over a certain time period or not. In our case (time) interaction terms represent the 

interaction between our separation variables and the time dummies and determinate how separation effects have changed 

over time. These interaction terms pick up the inter-temporal variation of our separation effect and remain only cross-

sectional variation.  
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in region j. For the co-patent network model, the origin variable ito is measured in terms of the 

number of co-patents in region i, while the destination variable 
jtd  denotes the number of co-

patents in region j.  

 

From the background of our research focus our interest is on K=6 separation measures
 

(1)

ijts
 

measures the geographical distance between the economic centres of two regions i and j in 

time period t, by using the great circle distance
15

. (2)

ijts
 
is a neighbouring region dummy 

variable that takes a value of one if the regions i and j in time period t are direct neighbours, 

and zero otherwise. (3)

ijts
 
is a country border dummy variable that we use as a proxy for 

institutional barriers. The variable takes a value of zero if two regions i and j in time period t 

are located in the same country, and one otherwise. (4)

ijts  is a language dummy variable – 

accounting for cultural barriers that takes a value of zero if two regions i and j in time period t 

are located in the same language area, and one otherwise
16

. (5)

ijts captures technological 

distance by using regional patent data from the European Patent Office (EPO). The 

application date is used to extract the data for each year of our time frame. We follow 

Moreno, Paci and Usai (2005) and construct a vector for each region i that contains region i’s 

share of patenting in each of the technological subclasses of the International Patent 

Classification (IPC)
17

. Technological proximity between two regions i and j in time period t is 

given by the uncentred correlation between their technological vectors. (6)

ijts  captures core-

region effects; it is defined as a dummy variable that is set to one if two regions i and j in time 

period t are the location of the capital city of a country, and zero otherwise (see Scherngell 

and Lata 2012). 

  

6  Estimation results 

 

Table 2 reports the results from the estimation of the spatially filtered random effects 

Negative Binomial spatial interaction models as specified in the previous section. Standard 

                                                
15 Note further that according to Bröcker (1989), we calculate the intraregional distance as 

(1) 0.5
(2 / 3) ( / )

ii i
s A   , where 

Ai denotes the area of region i, i.e. the intraregional distance is two third the radius of an presumed circular area. 

16 Language areas are defined by the region`s dominant language. However, in most cases the language areas are combined 

countries, as for instance Austria, Germany and Switzerland (one exception is Belgium, where the French speaking regions 

are separated from the Flemish speaking regions). 

17 Technological subclasses correspond to the third-digit level of the IPC systems. 
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errors are given in brackets. The first column presents the results for the FP network, while 

the second column contains the estimates for the co-patent network. As can been seen, the 

estimates for the origin, destination and separation variables are most often statistically 

significant. The bottom of the table presents some model diagnostics that are of 

methodological interest. The dispersion parameter is statistically significant in both model 

versions, indicating that the Negative Binomial specification is essential to account for 

overdispersion in the data. A likelihood ratio test which compares the panel estimator with the 

pooled estimator confirms the appropriateness of the random effects specification.  

 

The results are interesting in the context of the geography of innovation literature, but also 

very relevant and insightful from a European STI policy perspective. Geographical distance, 

as evidenced by the estimate of ß1, exerts in both networks, the FP network and the co-patent 

network, a negative effect on collaboration probability, i.e. in both networks R&D 

collaboration intensity between two regions significantly decreases when they are located 

further away geographical distance, and this effect seems only to differ slightly in magnitude. 

However, concerning other geographical factors, we find a much stronger negative effect in 

the co-patent network than in the FP network. One striking result concerns the high negative 

effect of country borders, as evidenced by the estimate for ß3, for the co-patent network as 

compared to the FP network showing that for R&D collaborations in the FPs country borders 

constitute only a low hurdle. In addition, co-patent networks seem to be to a high degree 

focused on neighbouring regions, i.e. the collaboration significantly increases when two 

organisations are located in regions that share a common border (ß2). This effect is much 

higher than in the FP network, pointing to a stronger spatial concentration and geographical 

localisation of R&D collaborations reflected by co-patents.   

 

Concerning language area effects (ß4), we also find considerable differences between the FP 

network and the co-patent network. The negative effect of language is much higher for the co-

patent network than for the FP network, i.e. the probability that organisations located in two 

different language areas collaborate is much lower in the co-patent network. This may be 

explained by the fact that the co-patent networks are much more subject to the industry sector, 

where such language barriers may – as suggested by results provided by Scherngell and 

Barber (2011) – constitute a lower hurdle than for research including public research 

organisations, in particular universities.  
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Table 2.  Estimation results of the spatially filtered random effects 

Negative Binomial spatial interaction models  

 
 

FP-network 

 

 

Co-patent network 

 

Origin  and destination variable  

[α1] = [α2] 

0.955
*** 

 (0.002) 

0.354
***

 

(0.003) 

Geographical distance     

 [ ß1] 

-0.210
***

 

(0.005) 

-0.266
***

 

(0.005) 

Neighbouring region 

 [ ß2] 

0.229
*** 

(0.021) 

0.710
*** 

(0.017) 

Country border effects    

 [ß3] 

-0.062
***

 

(0.016) 

-1.058
****

 

(0.016) 

Language area effects        

 [ ß4] 

-0.163
***

 

(0.013) 

-0.740
***

 

(0.014) 

Technological Distance  

 [ ß5] 

-0.300
*** 

(0.018) 

-1.535
*** 

(0.023) 

Core region  

 [ ß6] 

0.049
***

 

(0.022) 

0.010
 

(0.026) 

Number of significant time effects 7  5 

Number of origin spatial filters  32 39 

Number of destination spatial filters 29 47 

Constant [α0] 
-6.465

***
 

(0.041) 

-2.426
***

 

(0.041) 

Dispersion parameter 
19.838

*** 

(0. 253) 

2.723
*** 

(0.045) 

LR Test  (spatial filters) 

LR Test  (random effects) 

LR Test  (overdispersion) 

1,323.59
*** 

19,0241.7
*** 

454,847.2
***

 

4,913.28
*** 

42,538.3
*** 

764,341.7
***

 

Log Likelihood
 

-879,636.9 -415,169.8 

 

Notes: ***significant at the 0.001 significance level 
The LR Test (spatial filter) is a Likelihood Ratio test that compares the model fit of the spatially filtered 

model against the unfiltered model versions. The test statistic is significant for both models. Thus the 

spatially filtered model specification is appropriate. The  LR Test (random effects)  is aLikelihood Ratio 
test that compares the panel estimator with the pooled estimator. The significant values confirm the 

importance of a random effect specification. The LR Test (overdispersion)  is the Likelihood Ratio Test 

that compares the random effects negative binomial model to the random effects Poisson specification 
(see Long and Freese 2001). A significant value points to the existence of overdispersion, namely, the 

negative binomial specification is to be preferred to the Poisson specification.  

 

 

Technological distance (ß5) is the most important determinant for cross-region R&D 

collaborations in both networks, and, by this, earlier results by Scherngell and Barber (2009 

and 2011) or Fischer et al. (2006) are confirmed. However, the effect is much stronger in the 
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co-patent network, which is to be expected since co-patent networks are more application 

oriented, where specific technologies and technological devices are more important. 

Furthermore, the FPs are intended to support in particular interdisciplinary knowledge 

production.  

 

Core region effects (ß6) are significant – though rather small – in the FP network, while even 

insignificant in the co-patent network, pointing to the fact that in the FP network a 

geographical core of regions is disproportionally participating  inFP collaborations as 

compared to the average region, i.e. non-core regions have a lower probability to get 

connected (Scherngell and Lata 2012). This may be related to the fact that organisations 

located in core regions may be more experienced in collaborations with different public 

stakeholders, and, thus, in conducting FP projects than organisations in peripheral regions, 

while such assets may not be necessarily essential for organisations participating co-patent 

collaborations. However, the effect is rather small as compared to other separation effects.  

 

Overall, in the context of our focus on integration in European R&D, we can infer that 

integration is much higher in the FP network than in the co-patent, as most of the separation 

variables exert a higher negative effect. This result has been expected, since more applied 

oriented, competitive research is subject to a minor group of actors often located within one 

region. However, having in mind the ERA goal of progress towards more integration in 

European R&D, covering different phases of R&D, one may conclude that barriers hampering 

collaborations in the co-patent network – for instance language barriers or country borders – 

should be addressed more thoroughly. This may be addressed by education programs for 

overcoming language barriers or policy initiatives that remove institutional hurdles for 

collaborations in patenting, though, one have to be clear that due to the competitive character 

of this type of research, such patterns may never fully disappear.  

 

However, in order to be able to gain empirical insight into progress towards more integration, 

we need to reflect on time trends. For this reason we look at interaction terms between 

selected separation variables and our time dummies. Table 3 presents the results for these 

interaction terms in the two networks for the years 2000 to 2005. The most striking result is 

that all separation variables accounting for spatial effects significantly decline in the FP-

network, i.e. the FP network becomes more geographically integrated over the observed time 

period. This cannot be observed for the co-patent network. In particular for the years 2004 
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and 2005 we cannot identify a significant interaction effect between time and spatial 

separation variables, i.e. progress towards more integration cannot be observed, while this 

progress can be clearly observed for the FP network. 

 

Table 3. Time trends for identifying distinct geographical integration patterns in the networks 

Time interaction 

terms 

FP-Network 

2000 2001 2002 2003 2004 2005 

Geographical 

distance 

--0.100
***

 

(0.000) 

-0.076
*** 

(0.000) 

--0.053
***

 

(0.000) 

-0.050
***

 

(0.000) 

--0.013
***

 

(0.000) 

--0.008
 ***

 

(0.000) 

Neighbouring 

region 

-0.375
*** 

(0.013) 

-0.280
*** 

(0.012) 

-0.188
*** 

(0.012) 

-0.180
*** 

(0.012) 

-0.055
*** 

(0.011) 

-0.009
 

(0.011) 

Country border 

effects  

-0.507
***

 

(0.003) 

-0.382
***

 

(0.002) 

-0.264
****

 

(0.002) 

-0.249
***

 

(0.002) 

-0.065
***

 

(0.001) 

-0.040
***

 

(0.001) 

Time interaction 

Terms 

 

Co-Patent Network 

 

2000 2001 2002 2003 2004 2005 

Geographical 

distance 
--0.016

***
 

(0.002) 

--0.012
***

 

(0.002) 

--0.008
***

 

(0.002) 

--0.005
**

 

(0.002) 

-0.000 

(0.002) 

-0.000 

(0.002) 

Neighbouring 

region 
0.047

** 

(0.025) 

0.021
 

(0.024) 

0.073
** 

(0.025) 

0.036
 

(0.024) 

0.029
 

(0.024) 

-0.003
 

(0.024) 

Country border 

effects 
-0.131

***
 

(0.019) 

-0.093
*** 

(0.019) 

-0.068
***

 

(0.019) 

-0.061
***

 

(0.091) 

0.004 

(0.019) 

 0.001
***

 

(0.018) 

***significant at the 0.001 significance level, **significant at the 0.01 significance level 

 

 

7  Conclusions 

 

The focus of this study has been on the nature of integration processes in European R&D. 

More specifically we have shifted emphasis to the investigation of the geographical dynamics 

of two different types of R&D collaboration networks across Europe, namely co-patent 

networks and project based R&D networks within the EU Framework Programmes (FPs). 

Adopting a spatially filtered panel version of the Negative Binomial spatial interaction model, 

we have identified and compared geographical, technological, institutional and cultural effects 

that influence the probability for collaboration activities in the different collaboration 

networks over time, and, by this, have provided novel evidence on integration processes in 

European R&D. 
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The results are quite astonishing, as – given the complex nature of the data we are 

investigating – the advanced methodological approach employed in this study seems to be a 

very effective way to disclose geographical dynamics of R&D collaboration patterns in the 

two networks under consideration. The most elemental and important result, both in the 

context of the literature on the geography of innovation as well as in a European policy 

context, is that integration in FP networks seems to be much higher than in the co-patent 

network. This is underpinned by the strong intra-national character of the co-patent network 

in contrast to the FP network, as well as the higher geographical localisation of co-patent 

collaboration activities within narrow geographical boundaries. These results may on the one 

hand be explained by the different nature of the knowledge creation process in the two 

networks, but also by policy related circumstances, in that the FP programmes explicitly 

foster integration processes, and at the same time more policy efforts should be envisaged that 

ease collaboration in more applied oriented research.  

 

Methodologically, the study is interesting as it breaks new ground by estimating a panel 

version of the Negative Binomial spatial interaction model accounting for spatial 

autocorrelation of flows. Though robustness of the model may tested further, the 

methodological approach seems to be an important contribution to the debate on spatial 

autocorrelation issues of flows, applied to a panel data structure posing additional modelling 

requirements that have been applied in this study. 

 

Some ideas for future research come to mind. First, the estimation of time trends, for instance 

by means of a dynamic version of the spatial interaction model, is a core subject for future 

research, requiring both theoretical as well as computational advancements. Second, the 

inclusion of other types of R&D networks in the comparative analysis, in particular co-

publication networks, is essential to complement the results provided by the current study.  
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Appendix A 

NUTS is an acronym of the French for the “nomenclature of territorial units for statistics", which is a 

hierarchical system of regions used by the statistical office of the European Community for the production of 

regional statistics. At the top of the hierarchy are NUTS-0 regions (countries) below which are NUTS-1 regions 

and then NUTS-2 regions. This study disaggregates Europe's territory into 255 NUTS-2 regions located in the 

EU-25 member states (except Cyprus and Malta) plus Norway and Switzerland. We exclude the Spanish North 

African territories of Ceuta y Melilla, the Portuguese non-continental territories Azores and Madeira, and the 

French Departments d'Outre-Mer Guadeloupe, Martinique, French Guayana and Reunion. Thus, we include the 

following NUTS 2 regions: 

 

Austria:  Burgenland, Kärnten, Niederösterreich, Oberösterreich, Salzburg, Steiermark, Tirol, 

Vorarlberg, Wien 

Belgium:  Prov. Antwerpen, Prov. Brabant-Wallon, Prov. Hainaut, Prov. Limburg (B), Prov. 

Liège, Prov. Luxembourg (B), Prov. Namur, Prov. Oost-Vlaanderen, Prov. Vlaams-

Brabant, Prov. West-Vlaanderen, Région de Bruxelles-Capitale / Brussels 

Hoofdstedelijk Gewest 

Czech Republic: Jihovýchod, Jihozápad, Moravskoslezsko, Praha, Severovýchod, Severozápad, Střední 

Morava, Střední Čechy 

Denmark:  Danmark 

Estonia: Eesti 

Finland:  Åland, Etelä-Suomi, Itä-Suomi, Länsi-Suomi, Pohjois-Suomi 

France:  Alsace, Aquitaine, Auvergne, Basse-Normandie, Bourgogne, Bretagne, Centre, 

Champagne-Ardenne, Corse, Franche-Comté, Haute-Normandie, Île de France, 

Languedoc-Roussillon, Limousin, Lorraine, Midi-Pyrénées, Nord - Pas-de-Calais, Pays 

de la Loire, Picardie, Poitou-Charentes, Provence-Alpes-Côte d'Azur, Rhône-Alpes 

Germany:  Arnsberg, Berlin, Brandenburg, Braunschweig, Bremen, Chemnitz, Darmstadt, Dessau, 

Detmold, Dresden, Düsseldorf, Freiburg, Gießen, Halle, Hamburg, Hannover, 

Karlsruhe, Kassel, Koblenz, Köln, Leipzig, Lüneburg, Magdeburg, Mecklenburg-

Vorpommern, Mittelfranken, Münster, Niederbayern, Oberbayern, Oberfranken, 

Oberpfalz, Rheinhessen-Pfalz, Saarland, Schleswig-Holstein, Schwaben, Stuttgart, 

Thüringen, Trier, Tübingen, Unterfranken, Weser-Ems 

Greece:  Anatoliki Makedonia, Thraki; Attiki; Ipeiros; Voreio Aigaio; Dytiki Ellada; Dytiki 

Makedonia; Thessalia; Ionia Nisia; Kentriki Makedonia; Kriti; Notio Aigaio; 

Peloponnisos; Sterea Ellada 

Hungary: Dél-Alföld, Dél-Dunántúl, Észak-Alföld, Észak-Magyarország, Közép-Dunántúl, 

Közép-Magyarország, Nyugat-Dunántúl 

Ireland:  Border, Midland and Western; Southern and Eastern 
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Italy:  Abruzzo, Basilicata, Calabria, Campania, Emilia-Romagna, Friuli-Venezia Giulia, 

Lazio, Liguria, Lombardia, Marche, Molise, Piemonte, Puglia, Sardegna, Sicilia, 

Toscana, Trentino-Alto Adige, Umbria, Valle d'Aosta/Vallée d'Aoste, Veneto 

Latvia: Latvija 

Lithuania: Lietuva 

Luxembourg:  Luxembourg (Grand-Duché) 

Netherlands:  Drenthe, Flevoland, Friesland, Gelderland, Groningen, Limburg (NL), Noord-Brabant, 

Noord-Holland, Overijssel, Utrecht, Zeeland, Zuid-Holland Norway:Agder og 

Rogaland, Hedmark og Oppland, Nord-Norge, Oslo og Akershus, Sør-Østlandet, 

Trøndelag, Vestlandet 

Poland: Dolnośląskie, Kujawsko-Pomorskie, Lubelskie, Lubuskie, Łódzkie, Mazowieckie, 

Małopolskie, Opolskie, Podkarpackie, Podlaskie, Pomorskie, Śląskie, Świętokrzyskie, 

Warmińsko-Mazurskie, Wielkopolskie, Zachodniopomorskie 

Portugal:  Alentejo, Algarve, Centro (P), Lisboa, Norte 

Slovakia: Bratislavský kraj, Stredné Slovensko, Východné Slovensko, Západné Slovensko 

Slovenia: Slovenija 

Spain:  Andalucía, Aragón, Cantabria, Castilla y León, Castilla-La Mancha, Cataluña, 

Comunidad Foral de Navarra, Comunidad Valenciana, Comunidad de Madrid, 

Extremadura, Galicia, Illes Balears, La Rioja, País Vasco, Principado de Asturias, 

Región de Murcia 

Sweden:  Mellersta Norrland, Norra Mellansverige, Småland med öarna, Stockholm, Sydsverige, 

Västsverige, Östra Mellansverige, Övre Norrland 

Switzerland: Espace Mittelland, Nordwestschweiz, Ostschweiz, Région lémanique, Ticino, 

Zentralschweiz, Zürich 

United Kingdom:  Bedfordshire & Hertfordshire; Berkshire, Buckinghamshire & Oxfordshire; Cheshire; 

Cornwall & Isles of Scilly; Cumbria; Derbyshire & Nottinghamshire; Devon; Dorset & 

Somerset; East Anglia; East Riding & North Lincolnshire; East Wales; Eastern 

Scotland; Essex; Gloucestershire, Wiltshire & North Somerset; Greater Manchester; 

Hampshire & Isle of Wight; Herefordshire, Worcestershire & Warkwickshire; 

Highlands and Islands; Inner London; Kent; Lancashire; Leicestershire, Rutland and 

Northamptonshire; Lincolnshire; Merseyside; North Eastern Scotland; North Yorkshire; 

Northern Ireland; Northumberland and Tyne and Wear; Outer London; Shropshire & 

Staffordshire; South Western Scotland; South Yorkshire; Surrey, East & West Sussex; 

Tees Valley & Durham; West Midlands; West Wales & The Valleys; West Yorkshire 

 

 

 

 

 


