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Abstract

In spatial econometrics, it is customary to specify a weighting matrix,
the so-called W matrix, just choosing one matrix from the different types
of matrices a user is considering (Anselin, 2002). In general, this selection
is made a priori, depending on the user’s judgment. This decision is
extremely important because if matrix W is miss-specified in some way,
parameter estimates are likely to be biased and they will be inconsistent in
models that contain some spatial lag. Also, for models without spatial lags
but where the random terms are spatially autocorrelated, the obtaining
of robust standard estimates of the errors will be incorrect if W is miss-
specified. Goodness-of-fit tests may be used to chose between alternative
specifications of W. Although, in practice, most users impose a certain
W matrix without testing for the restrictions that the selected spatial
operator implies. In this paper, we aim to establish a nonparametric
procedure where the chosen by objective criteria. Our proposal is related
with the Theory of Information. Specifically, the selection criterion that
we propose is based on objective information existing in the data, which
does not depend on the investigator’s subjectivity: it is a measure of
conditional entropy. We compare the performance of our criteria against
some other alternative like the J test of Davidson and McKinnon or a
likelihood ratio obtained in a maximum likelihood framework.
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Introduction

The weighting matrix is a very characteristic element of spatial models and,
frequently, is cause of dispute in relation to what is it and how should it be
specified. Half a century has gone after the pioneering works of Moran (1948)
or Whittle (1954), where the terms “join” or “link” were used preferently. The
work of Ord (1975) is very important in the conversion of this matrix in a
key element for modelling spatial data. The matrix has received considerable
attention afterward (Anselin, 2002) but, from our point of view, we do not have
still a totally convincing answer to both questions.

The weighting matrix is a spatial operator usually taken for granted in
applied work. According to our view, this is a very optimistic position because
exist a great uncertainty that characterizes its specification. Take for example
the principle of allotopy as stated by Ancot et al. (1982): “often what happens
in a region is related with other phenomena located in distinct and remote
parts of the space”. The problem is identify which ones. A time series analyst
faces similar problems although he has clear indications: due to the nature
of economic dynamics, you must look to the past and take into account also
the frequency of the data. None of the two questions is free from controversy
when the data proceed form a spatial cross-section. The Space is irregular and
heterogeneous (nothing to do with the monotonous succession of time) and the
influences may be of any type across Space. Nearness, as claimed by Tobler
(1970) is just one possibility.

We agree with Haining (2003, p.74) in the sequence of actions: “The first
step of quantifying the structure of spatial dependence in a data set is to define
for any set of point or area objects the spatial relationships that exist between
them”. This is what Anselin (1988, p. 16) designates “the need to determine
which other units in the spatial system have an influence on the particular unit
under consideration (. . . ) expressed in the topological notions of neighborhood
and nearest neighbor”. This first step is crucial, absolutely, but it might be
not so simple as just writing a binary or row-standardized weighting matrix.
In some cases, we might have enough information to fully specify a weighting
matrix. In other cases, this matrix will be a mere hypothesis. We suspect that
the second situation is, by far, the most common among practitioners.

According to our view, the weighting matrix results from a problem of
underidentification that affects, in general, to most of the spatial models.
Paelinck (1979, p.20) acknowledges that there is an identification problem in
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the interdependent specifications used to model spatial behaviors. In terms of
Lesage and Pace (2009, p.8), a unrestricted spatial autoregressive process:

yi = αijyj + αikyk + xiβ + εi

yj = αjiyi + αjkyk + xjβ + εj

yk = αkiyi + αkjyj + xkβ + εk

εi; εj ; εk ∼ N
(
0;σ2)

 (1)

“would be of little practical usefulness since it would result in a system with many
more parameters than observations. The solution to the over-parametrization
problem that arises when we allow each dependence relation to have relation-
specific parameters is to impose structure on the spatial dependence parameters”.
This is the reason why we need a spatial weighting matrix. In spite of the efforts
of Folmer and Oud (2008), trying to advance towards what they call a structural
approach to the the weighting matrix, or the arguments of Paci and Usai (2009)
in favor of the use of proxies for spillover effects, this is a point of consensus in
the literature.

The question of specifying a matrix seems complex, although usual practice
has favoured simple solutions. By large, the dominant approach involves an
exogenous treatment of the problem. Nearby or neighboring spatial units are
identified as contiguous in a square binary connectivity matrix as, for example,
in the traditional physical adjacency criteria, the m-nearest neighbors or the
great circle distance. Afterwards, the binary matrix can be normalized in
some way (by rows, columns, according to the total sum). Other matrices are
constructed using some given function of the geographical distance between the
centroids of the spatial units; the inverse of the distance between the two points
is the most common measure of distance and the matrix may also be normalized.
Geography may be substituted by another domain in order to obtain others
measures of distance. Recently they have appear various endogenous procedures
like the AMOEBA algorithm (Getis and Aldsdat, 2004, Aldsdat and Getis,
2006), the CCC method of Mur and Paelinck (2010) or the entropy-based
approach of Esteban et al (2009). Although very different between them, the
basic idea of the endogenous approaches appeared in the works of Kooijman
(1976) and Openshaw (1977): exploit the information contained in the raw
data, or in the residuals of the model, in order estimate the weighting matrix.
This is feasible if we have a panel of spatial data like in Conley and Molinari
(2007), Bhattacharjee and Jensen-Butler (2006) and Beenstock et al (2010) but
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risky in the case of a single cross-section (the problem is data mining). Finally,
there are different well-known approaches which combine strong a prioris about
the channels of interaction with endogenous inferential algorithms (Bodson and
Peters, 1975, Dacey, 1965).

Bavaud (1998, p.153), given this state of affairs, is clearly skeptic, “there is
no such thing as “true”, “universal” spatial weights, optimal in all situations”
and continues by stating that the weighting matrix “must reflect the properties
of the particular phenomena, properties which are bound to differ from field to
field”. We share his skepticism. What does this means? That, at the end,
the problem of selecting a weighting matrix among the different possibilities
is a problem of model selection. In fact, different weighting matrices result in
different spatial lags of the endogenous or the exogenous variables included in
the model. Different equations with different regressors amounts to a model
selection problem, even when the weighting matrix appears in the equation of
the errors. This is the direction that we want to explore in the present paper
as an alternative way to deal with the uncertainty of specifying the spatial
weighting matrix.

Section 2 continues with a revision of the techniques of model selection
that seem to fit better into our problem. We present our own non-parametric
procedure in Section 3. Section 4 discusses a large Monte Carlo experiment in
which we compare the small sample behaviour of the most promising techniques.
Section 5 concludes summarizing the most interesting results of our work.

Choosing a Weighting Matrix

The model of (1) can be written in matrix form:

y = Γy + xβ + ε (2)

where y and ε are (n× 1) vectors, x is a (n× k) matrix, β is a (k× 1) vector of
parameters and Γ is a (n × n) matrix of interaction coefficients. The model is
underidentified. A solution, perhaps the most popular, consists of introducing
some structure in the matrix Γ, parametrizing the spatial interaction coefficients
as, for example: Γ = ρW , ρ is a parameter and W a matrix of weights. The
term yW = Wy that, consequently, appears on the right hand side (rhs, form
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now on) of the equation is called the spatial lag of the endogenous variable. At
this point it is worth to highlight a couple of questions:

(i) The weighting matrix can be constructed in different ways following, for
example, some interaction hypothesis. Each hypothesis will result in a
different weighting matrix leading to a different spatial lag. In sum, different
weighting matrices amounts to different models.

(ii) There are some general guidelines about how to specify a weighting matrix
using concepts like nearness, accessibility, influence, etc. Different models
might require different interaction channels that are not necessarily known.
This implies uncertainty and diffuse priors.

Corrado and Fingleton (2011) discuss the construction of the weighting matrix
on theoretical grounds (that is, they wonder, among other things, about the
information that the weights of a weighting matrix should contain). We prefer
to focus on the statistical treatment of such uncertainty.

Let us assume that we have a set of N linearly independent weighting
matrices, Υ = {W1;W2; . . . ;WN}. Usually N corresponds to a small number
of different competing matrices but in some cases this number may be quite
large, reflecting a situation of great uncertainty. As said, each matrix generates
a different spatial lag and a different spatial model. These matrices may be
related by different restrictions, resulting in a series of nested models; if the
matrices are not related, the sequence of spatial models will be non-nested.

Two weighting matrices may be nested, for example, in the cases of binary
rook-type and queen-type movements: all the links of the first matrix are
contained in the second matrix which include also some other non-zero links.
Discriminating between these two matrices is not difficult using the techniques
for selecting between nested models. For example, in a maximum-likelihood
approach (we would need the assumption of normality) it may be enough with
a likelihood ratio or a Lagrange Multiplier. The last one is very simple as appear
in the Appendix 1.

For the case of non-nested matrices, we may find several proposals in the
literature. Anselin (1984) provides the appropriate Cox-statistic for the case of:

H0 : y = ρ1W1y + x1β1 + ε1

HA : y = ρ2W2y + x2β2 + ε2

}
(3)
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that Leenders (2002) converts into the J-test using an augmented regression like
the following:

y = (1− α) [ρ1W1y + x1β1] + α
[
ρ̂2W2y + x2β̂2

]
+ ν (4)

being ρ̂2 and β̂2 the corresponding maximum-likelihood estimates (ML from now
on) of the respective parameters on a separate estimation of HA and generalizes
also to the comparison of a null model against N different models. Kelejian
(2008) maintains the approach of Leenders although in a SARAR framework,
which requires GMM estimators:

y = ρiWiy + xiβi + ui = Ziγi + ui (5)

ui = λiMiui + vi

with i = 1, 2, ...., N , Zi = (Wiy, xi) and γi = (ρi, β) . The J-test for selecting a
weighting matrix corresponds to the case where xi = x; Wi = Mi but Wi 6= Wj .
In order to obtain the test we need the estimation of an augmented regression,
similar to that of (4):

y(λ̂) = S(λ̂)η + ε (6)

where S(λ̂) =
[
Z(λ̂), F

]
, Z(λ) = (I − λW ) (the same for y), being

λ̂ the estimate of λ for the model of the null. Moreover F =
[Z1γ̂1, Z2γ̂2, . . . , ZN γ̂N ,W1Z1γ̂1,W2Z2γ̂2, . . . ,WNZN γ̂N ]. The equation of 6
can be estimated by 2SLS using a matrix of instruments: Ŝ =

[
Ẑ(λ̂), F̂

]
, where

F̂ = PF (similar forZ(λ̂)) with P = H (H ′H)−1
H and H =

[
x,Wx,W 2x

]
.

Under the null that, let say, model 0 is correct the 2SLS estimate of η is
asymptotically normal:

η̂ ∼ N
[
η0;σ2

ε

(
Ŝ′Ŝ

)−1
]

(7)

where η0 = [γ′; 0]. The J test means that the last 2N parameters of vector
η are zero. Define δ̂ = Aη̂ where A is a 2N × (k+ 1 + 2N) matrix corresponding
to the null hypothesis: H0 : Aη = 0, then the J tests can be formulated as a
Wald statistic:

δ̂′V̂ −1δ̂ ∼ χ2(2N) (8)
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being V̂ the estimated sample covariance of δ̂.
Burridge and Fingleton (2010) show that the asymptotic chi-square

distribution for the J-test, under the null, may be a poor approximation.
They advocate for a bootstrap resampling procedure that appears to improve
slightly both size and power. There remain implementation problems related to
the use of consistent estimates for the parameters of (5) in the corresponding
augmented regression. Kelejian (2008) proposes construct the test using GMM-
type estimators and Burridge (2011) suggests a mixture between GMM and
likelihood-based moment conditions which controls more effectively the size of
the test. Piras and Lozano (2010) present new evidence on the use of the J-test
that relates the power of the test to a judicious selection of the instruments.

The problem of model selection has been treated very often, and very
successfully, from a Bayesian perspective (Leamer, 1978); this includes the
case of selecting a weight matrix in a spatial model by Hepple (1985 a, b).
The Bayesian approach, although highly demanding in terms of information, is
appealing and powerful. The method appears well documented in Lesage and
Pace (2009). The same as with the J-test, the starting point is a finite set of
alternative models, M = {M1;M2; . . . ;MN}. The specification of each model
coincides (regressors, structure of dependence, etc.) but not for the spatial
weighting matrix. Denote by θ the vector of k parameters. Then, the joint
probability of the set of N models, k parameters and n observations corresponds
to:

p (M, θ, y) = π (M)π (θ|M)L (Y | θ,M) (9)

where π (M) refers to the priors of the models, usually π (M) = 1/N ; π (θ|M)
reflects the priors of the vector of parameters conditional to the model and
L (y| θ,M) is the likelihood of the data conditioned on the parameters and
models. Using the Bayes’ rule:

p (M, θ|y) = p (M, θ, y)
p (y) = π (M)π (θ|M)L (y| θ,M)

p (y) (10)

The posterior probability of the models, conditioned to the data, results
from the integration of (7) over the parameter vector θ:

p (M |y) =
ˆ
p (M, θ|y) dθ (11)
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This is the measure of probability needed in order to compare different
weighting matrices. Lesage and Pace (2009) discuss the case of a Gaussian
SAR model:

y = ρiWiy +Xiβi + εi

εi ∼ i.i.d.N (0;σ2
ε )

}
(12)

The log-marginal likelihood of (9) is:

p (M |y) =
ˆ
πβ
(
β|σ2)πσ (σ2)πρ (ρ)L (y| θ,M) dβdσ2dρ (13)

They assume independence between the priors assigned to β and σ2, Normal-
Inverse-Gamma (NIG in what follows) conjugate priors, and that for ρ, a
Beta(d, d) distribution. The calculations are not simple and, finally, ’we must
rely on univariate numerical integration over the parameter ρ to convert this
(expression 13) to the scalar expression necessary to calculate p (M |Y ) needed
for model comparison purposes’ (Lesage and Pace, 2009, p 172). The SEM case
is solved in Lesage and Parent (2007); to our knowledge, the SARAR model of
(5) remains still unsolved.

The techniques of model selection may also be useful here, specially if we
have no preferences for a given weighting matrix; in other words, if we do not
have a W matrix in the null hypothesis. There is a huge literature on model
selection for nested and non-nested models with different purposes and criteria.
In our case, we are looking for the most appropriate weighting matrix in order
to better fit the data, so the Kullback-Leibler information criterion may be a
good standard. The Akaike information criterion is simple to obtain and assures
a certain trade-off between fit and parsimony (Akaike, 1974). The expression
of the statistic is very well-known:

AICi = −2L
(
θ̂; y
)

+ q(k) (14)

being L
(
θ̂; y
)

the log-likelihood of the model at the maximum-likelihood
estimates, θ̂,and q(k) a penalty function that depends on the number of unknown
parameters. The most common specification for the penalty is simply q(k) = 2k.
The decision rule is to select the model, weighting matrix in our case, that
produces the lowest AIC.

Recently Hansen (2007) introduced another perspective to the problem of
model selection that is related to the confidence of the practitioner in the
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alternatives. In general, the criteria that minimize the mean-square estimation
error achieve a certain balance between bias, due to misspecification errors,
and variance due to parameter estimation. The optimal criterion would select
the estimator with the lowest risk. This is what happens with most of the
selection criteria as, for example, the AIC or the SBIC statistic; also with the
Bayesian concept of posterior probability, which combines prior with sampling
information. The procedure of the J test is a classical decision problem solved,
using only sampling information, with the purpose of minimizing the type II
error assuring a given type I error.

Expressed in another way, given our collection of weighting matrices W =
{W1;W2; . . . ;WN}, all of which are referred to a spatial model, the purpose is
to select the matrix, Wn, which, combined with the other terms of the model,
produces a vector of estimates,θ̂n(Wn), that minimizes the risk. Hansen (2007)
show that further reductions in the mean-squared error can be attained by
averaging across estimators. The averaging estimator for θ is:

θ̂(W ) =
N∑
n=1

$nθ̂n(Wn) (15)

As stated in Hansen and Racine (2010), the collection of weights,
{$n;n = 1, 2, ..., N} should be non-negative and lie on the unit simplex of

RN;
N∑
n=1

$n = 1.

A Non-Parametric Proposal for Choosing a
Weighting Matrix

The purpose of this section is to present a new non-parametric procedure for
selecting a weighting matrix. The selection criterion is based on the information
content existing in the Space for the relation we are working with; this relation
may be, or not, of a causal type. The measure of information that we use is
based on a reformulation of the traditional entropy indices in terms of what is
called symbolic entropy, and it does not depend on the priors of the practitioner.

As explained in Matilla and Ruiz (2008), the idea is, first, to transform the
series into a sequence of symbols which should capture the relevant information.
Then we translate the inference to the space of symbols using appropriate
techniques.
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Beginning with the symbolization process, assume that {xs}s∈S and {ys}s∈S
are two spatial processes, where S is a set of locations in Space. Denote by
Γn = {σ1, σ2, . . . , σn} the set of symbols defined by the practitioner; σi, for
i = 1, 2, . . . , l, is a symbol. Symbolizing a process is defining a map

f : {xs}s∈S → Γl (16)

such that each element xs is associated to a single symbol f (xs) = σis with
is ∈ {1, 2, . . . , l}. We say that location s ∈ S is of the σi − type, relative to
the series {xs}s∈S , if and only if f(xs) = σis . We call f the symbolization map.
The same process can be followed for the series ys.

Denote by{Zs}s∈S a bivariate process as:

Zs = {xs, ys} (17)

For this case, we define the set of symbols Ωl as the direct product of the two
sets Γl, that is, Ω2

l = Γl × Γl whose elements are of the form ηij =
(
σxi , σ

y
j

)
.

The symbolization function of the bivariate process would be

g : {Zs}s∈S → Ω2
l = Γl × Γl (18)

defined by

g (Zs = (xs, ys)) = (f (xs) , f (ys)) = ηij =
(
σxi , σ

y
j

)
(19)

We say that s is ηij − type for Z = (x, y) if and only if s is σxi − type for x
and σyj − type for y.

In the following, we are going to use the following symbolization function f
. Let Mx

e be the median of the univariate spatial process {xs}s∈S and define
the indicator function

τs =
{

1 if xs ≥Mx
e

0 otherwise
(20)

Let m ≥ 2 be the embedding dimension, defined by the practitioner. For
each s ∈ S, let Ns be the set formed by the (m− 1) neighbours s. We use
the term m − surrounding to denote the set formed by each s and Ns, such
that m − surrounding xm (s) =

(
xs, xs1 , . . . , xsm−1

)
. We define the indicator

function for each si with i = 1, 2, . . . ,m− 1:
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ιssi =
{

0 if τs 6= τsi

1 otherwise
(21)

Finally, we have a symbolization map for the spatial process {xs}s∈S as
f : {xs}s∈S → Γm, where:

f (xs) =
m−1∑
i=1

ιssi (22)

Γm = {0, 1, . . . ,m− 1}. The cardinality of Γm is equal to m.
Moreover, we need to introduce some fundamental definitions:

Definition 1: The Shannon entropy, h (x), of a discrete random variable x is:
h (x) = −

n∑
i=1
p (xi) ln (p (xi)).

Definition 2: The entropy h (x, y) of a pair of discrete random variables (x, y)
with joint distribution p (x, y) is: h (x, y) = −

∑
x

∑
y
p (x, y) ln (p (x, y)).

Definition 3: Conditional entropy h (x|y) with distribution p (x, y) is defined
as: h (x|y) = −

∑
x

∑
y
p (x, y) ln (p (x|y)).

The last index, h (x|y), is the entropy of x that remains when y has been
observed.

These entropy measures can be adapted to the empirical distribution of the
symbols. Once the series has been symbolized, for a embedding dimension
m ≥ 2, we can calculate the absolute and relative frequency of the collections
of symbols σxis ∈ Γl and σyjs

∈ Γl.
The absolute frequency of symbol σxi is:

nσx
i

= # {s ∈ S|s is σxi − type for x} (23)

Similarly, for series {ys}s∈S , the absolute frequency of symbol σyj is:

nσy
j

= #
{
s ∈ S|s is σyj − type for y

}
(24)

Next, the relative frequencies can also be estimated:

p (σxi ) ≡ pσx
i

= # {s ∈ S|s is σxi − type for x}
|S|

=
nσx

i

|S|
(25)
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p
(
σyj
)
≡ pσy

j
=

#
{
s ∈ S|s is σyj − type for y

}
|S|

=
nσy

j

|S|
(26)

where |S| denotes the cardinal of set S; in general |S| = R.
Similarly, we calculate the relative frequency for ηij ∈ Ω2

l :

p (ηij) ≡ pηij
= # {s ∈ S|s is ηij − type}

|S|
=
nηij

|S|
(27)

Finally, the symbolic entropy for the two − dimensional spatial series
{Zs}s∈S is:

hZ (m) = −
∑
η∈Ω2

m

p (η) ln (p (η)) (28)

We can obtain the marginal symbolic entropies as

hx (m) = −
∑

σx∈Γm

p (σx) ln (p (σx)) (29)

hy (m) = −
∑

σy∈Γm

p (σy) ln (p (σy)) (30)

In turn, we can obtain the symbolic entropy of y, conditioned by the
occurrence of symbol σx in x as:

hy|σx (m) = −
∑

σy∈Γm

p (σy|σx) ln (p (σy|σx)) (31)

We can also estimate the conditional symbolic entropy of ys given xs:

hy|x (m) =
∑

σx∈Γm

p (σx)hy|σx (m) (32)

Now we can move to the problem of choosing a weighting matrix for the
relationship between variables x and y. This selection will be made among a
finite set of weighting matrices, relevant for the relationship between the two
processes. Let us denote by W (x, y) = {W| ∈ J } this set of matrices, where
J is a set of indices. We refer to W (x, y) as the spatial-dependence structure
set between x and y.

Denote by K a subset of Γm and let W ∈ W (x, y) be a member of the set
of matrices. We can define

KxW = {σx ∈ K|σx is admissible forWx} . (33)
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where admissible indicates that the probability of occurrence of the symbol is
positive.

By Γxm we denote the set of symbols that are admissible for {xs}s∈S . Let
W0 ∈ W (x, y) be the most informative weighting matrix for the relationship
between x and y. Given the spatial process {ys}s∈S , there is a subset K ⊆ Γm
such that p

(
KxW0
|σy
)
> p (K∗xW |σy) for all K∗ ⊆ Γm, W ∈ W (x, y) \ {W0} and

σy ∈ Γym. Then

hW0x|y (m) = −
∑
σy∈Γy

p (σy)

 ∑
σx∈Kx

Wo

p (σx|σy) ln (p (σx|σy))

 ≤ (34)

≤ −
∑
σy∈Γy

pσy

 ∑
σx∈K∗x

W

p (σx|σy) ln (p (σx|σy))

 = hWx|y (m)

We have thus proved the following theorem.

Theorem 1: Let {xs}s∈S and {ys}s∈S two spatial processes. For a fixed
embedding dimension m ≥ 2, with m ∈ N, if the most important weighting
matrix that reveals the spatial-dependence structure between x and y is
W0 ∈ W (x, y) then

hW0x|y (m) = min
W∈W(x,y)

{
hWx|y (m)

}
. (35)

Monte Carlo Experiment

In this section, we generate a large number of samples from differents data
generation process (D.G.P.) to study the performance of different proposals: J
test, Bayesian approach, averaging estimator and conditional symbolic entropy.

Our principal interest is to detect the weighting matrix more informative
between different alternatives. For this, we having the explanatory variable, x,
the same in the all models, but the spatial structures differ, so that W0 = Wi,
where i is the matrix for the i− th alternative model.

A great variety of alternative of weighting matrices are possible for our study,
however we restrict our attention to k-nearest neighbors and weights distance-
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based. Also, we can work with different models: Spatial autoregressive process
(SAR) or spatial error model (SEM) or SARAR(p,q).

Each experiment starts by obtaining a random map in a hypothetical
two-dimensional space. This irregular map is reflected on the corresponding
normalized W matrix. In the first case, W is based on a matrix of 1s and
0s denoting contiguous and non-contiguous regions, respectively, subsequently
normalized so that rows sum to 1. For the second case, distance-based weigth,
W is constructed using wij = d−2

ij for dij < D, where D is a cut-distance, and
dij = 0 otherwise, denoting dijas the straigh-line (Euclidean) distance between
regions i ans j.

The following global parameters are involved in the D.G.P.:

N ∈ {100, 300, 600, 1000} , ρ ∈ {0.1; 0.3; 0.5; 0.7; 0.9} , m ∈ {4, 5, 6, 7, 8} (36)

where N is the sample size, ρ is the spatial autocorrelation parameter and m

is usually known as the embedding dimension. Briefly, the latter corresponds to
the set made by each observation and its m− 1 neighbours.

In the experiment, we want to simulate both linear and non-linear relations
between the variables x and y.

In the first case, linearity, we control the relation by, for instance, the
coefficient of determination expected from the equation. Based on a specification
like this:

y = βx+ θWx+ ε, (37)

the strength of the relation can be deduced by the expected R2
y/x coefficient.

Under equation (37), the expected coefficient of determination between
the variables is equal to (assuming an unit variance of x and in ε as well as
incorrelation between the two variables):

R2
y/x =

β2 +
(
θ2
/m−1

)
β2 +

(
θ2
/m−1

)
+ 1

We have considered different values for this coefficient:

R2
y/x ∈ {0.3; 0.5; 0.7; 0.9} (38)
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For simplicity, in all cases we maintain β = 0.5. The spatial lag parameter
of x, θ, is obtained by deduction: θ =

√
(1−m)(β2(1−R2)−R2)

1−R2 .
Having defined the values of the parameters involved in the simulation, we

can present the different processes used in the analysis.
To analyze the empirical size, we have considered that the variables are

distributed as follows:

y ∼ N (0, 1) (39)

x ∼ N (0, 1)

Two linear and two non-linear models have been contemplated for statistical
power. The latter are obtained by applying different non-linear transformations
to the variable y with respect to the corresponding linear case.
Linear Models

DGP1
y = βx+ θWx+ ε (40)

DGP2
y = (I − ρW )−1 (θWx+ ε) (41)

Non-Linear Models

DGP3
y = 1/(βx+θWx+ε) (42)

DGP4
y = 1/[(I−ρW )−1(θWx+ε)] (43)

In all cases: x ∼ N (0, 1) , ε ∼ N (0, 1) and Cov (x, ε) = 0.

15



[TO BE COMPLETED]

Conclusions

[TO BE COMPLETED]

Appendix 1. A Lagrange Multiplier for
discriminating between two weighting matrices

Let us assume a given spatial model of an autoregressive type with a normally
distributed error term:

y = ρWy + xβ + ε; ε ∼ iidN(0;σ2) (44)

We deal with the problem of choosing between two weighting matrices, one
of which is nested in the other. For example, we need to decide if the ring formed
by the 3 nearest neighbors is enough or do we need to use the 4 nearest neighbors
ring. The question is to decide if some weights might be zero. In that case, the
nesting weighting matrix may be splitted into two matrices: W = W1 + W0.
The null hypothesis is that the weights in W0 are not relevant in the model of
44, which becomes:

y = ρW1y + xβ + ε; ε ∼ iidN(0;σ2) (45)

The model of the alternative may be writen as:

y = ρ1W1y + ρ0W0y + xβ + ε; ε ∼ iidN(0;σ2) (46)

Strictly speaking, the parameters ρ0 and ρ1 must also coincide although the
important point is that if ρ0 is zero, the W0 weighting matrix dissapears from
the specification. Accordingly, we propose the following null and anternative
hypothesis:

H0 : ρ0 = 0
HA : ρ0 6= 0

}
(47)

Assuming normality in the error terms, the Lagrange Multiplier is the
following:
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LMW 0 =
(
y′W

′

0ε̂W 1

σ̂2 − tr (B1W0)
)2

σ̂2
g(ρ0) ∼ χ

2(1) (48)

σ̂2 is the maximum-likelihood estimation of σ2 obtained from the model of
46 under the null of 47; ε̂W 1 is the vector of residuals from the model of the null
where only intervenes the matrix W1 . B1 is the matrix B1 = (I − ρ̂1W1)−1

where the maximum likelihood estimation of parameter ρ̂1is used. The second
term of the expression, σ̂2

g(ρ0), refers to the inverse of the estimated variance
of the element of the score corresponding to the null hypothesis of 47. Its
composition is the following:

σ̂2
g(ρ0) = I−1

ρ0ρ0
+ I−1

ρ0ρ0
I
′

θρ0
I−1
θθ0
Iθρ0I

−1
ρ0ρ0

•Iρ0ρ0 = ŷ′W
′
0W0ŷ
σ̂2 + tr

(
B
′

1W0 +B
′

1W
′

0

)
B1W0

•I−1
θθ0

=
[
I−1
θθ − I ’

θρ0
I−1
ρ0ρ0

Iθρ0

]
•I ′θρ0

= 1
σ̂2

[
x′W0ŷ ŷ′W

′

0W1ŷ + σ̂2tr
(
W0B1B

′

1W
′

1 +B1W0B1W1

)
trB1W0

]
•I−1
θθ = 1

σ̂2


x′x x′W1ŷ 0

ŷ′W
′
1W1ŷ
σ̂2 + tr

(
B
′

1W1 +B
′

1W
′

1

)
B1W1 trB1W1

R
2σ̂2


Obviusly, I−1

θθ0
is the covariance matrix of the restricted maximum-likelihood

estimates, under the null of 47, of the vector θ′ =
[
β ρ1 σ2

]′
; I−1

θθ is the
covariance matrix of the unrestricted maximum likelihood estimates of vector
θ in the model of 47. Iθρ0 is the covariance vector between the maximum-

likelihood estimates of the coefficients of the null model, θ′ =
[
β ρ1 σ2

]′
,

and the parameter of the null hypothesis, ρ0. Given a significance level for the
test, α, the decision rule for testing the hypothesis of 47 is:

If 0 ≤ LMW 0 ≤ χ2
α(1) Do not reject H0,

If LMW 0 > χ2
α(1) Reject H0.
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