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Abstract
Local estimation is part of toolbox in current spatial econometric.

Geographically Weighted Regressions are very popular algorithms useful
to estimate static models in each point of the space, whereas the SALE or
the Zoom approaches are solutions in the case of dynamic models. These
techniques are well founded and have good properties. However, Farber
and Paez (2008) detect some inconsistencies and weaknesses. The point
that we want to study in this paper refers to the role of the bandwith. This
measure defines how many neighbors are used in the estimation of the local
parameters corresponding to each observation. The cross-validation is the
most popular technique to define the bandwith, although there are other
criteria that merit some consideration. On the other hand, the objective of
these algorithms is to relax the restriction of global homogeneity allowing
for local peculiarities. However, the definition of local neighborhood is
held constant across space. This restriction can be avoided. Specifically,
we discuss the procedure of specifying the sequence of local weighting
matrices that will be used in the analysis. Our purpose is to develop a
procedure for constructing a weighting matrix that reflects also the local
surrounding of each observation. We examine two different strategies: the
first is a parametric approach which involves the J test, as presented by
Kelejian (2008), and the second is a nonparametric approach that uses
the guidance of the symbolic entropy measures. The first part of the
paper presents the overall problem, including a review of the literature;
we discuss the solutions in the second part and the third part consists of
a Monte Carlo simulation.
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1 Introduction

The difficulties caused by the lack of stability in the parameters of an
econometric model are well known: biased and inconsistent estimators,
misleading tests and, in general, wrong inference. Their importance explains
the attention that the literature has dedicated to the problem. The first formal
test of parameter stability is that of Chow (1960), which considers only one
break point, known a priori. Dufour (1982) extends the discussion to the case
of multiple regimes and Phillips and Ploberger (1994) and Rossi (2005) place it
in a context of model selection.

The discussion quickly took on a spatial context with the work of Casetti
(1972, 1991), in which a parametric approach predominates. In fact, Casetti
proposes explicitly modeling how the break in the parameters is produced
through the so-called ‘contextual’ variables. In the nineties, there was a
great leap forwards when concern about the ‘pockets of local nonstationarity’,
characteristic of the literature dedicated to the LISA (Getis and Ord 1992;
Anselin 1995) coincided with the development of non-parametric procedures
for analyzing spatial data (McMillen 1996; McMillen and McDonald 1997).
The best known approach in this line is what Brunsdon et al. (1996) call
Geographically Weighted Regressions (GWR in what follows), whose immediate
precursor are the Locally Weighted Regressions (LWR from now on) proposed
in the seminal papers of Cleveland (1979) and Cleveland and Devlin (1988). In
all these papers, interest shifts from the general to the local.

The convenience of local approaches is clear when the heterogeneity of the
data is high and escapes the control of the model or when the appropriate
functional form is doubtful. The GWR algorithm has also been used to correct
the problems of spatial correlation that come from an inadequate treatment of
the spatial heterogeneity in the data (Páez et al. 2002a, 2002b). In any case,
flexible specifications are recommended.

The question that we wish to deal with in this paper continues in the same
line but focusing on the need of more flexibility in the sense of what may be
called a local spatial weighting matrix. That is, the GWR algorithm allows
for a greater heterogeneity but maintaining constant across space the definition
of neighborhood. From our point of view, this is an unnecessary restriction
that can be relaxed by adjusting the definition of neighborhood to the local
characteristics of each point. The problem is introduced in Section 2. Section
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3 proposes some solutions which are calibrated in Section 4. Section 5 contains
the main conclusions.

2 Why do we need more flexibility

Briefly, the GWR consists in estimating a given, usually linear, equation in each
point of the sampling space using only local information. Let us assume that
we have specified the following model:

y = xβ + u; u ∼ iidN(0,Λ) (1)

where y is the (Rx1) vector of the observations of the endogenous variable,
x is an (Rxk) matrix of observations of the k explanatory variables, u is a
random vector of error terms not necessarily homoskedastic and, for example,
normally distributed. For the moment, we assume that the specification does
not include spatial interaction terms. The model of 1 has been specified under
the assumption of homogeneity, which may not hold in some circumstances. As
indicated by McMillen (2004, p. 232): ‘spatial relationships are typically more
complicated. Statistical tests based on simple functional forms often reveal that
coefficients vary over space’; in other words, a certain unobserved heterogeneity
often persists in the data. The GWR solution is to introduce more flexibility
by acting on the systematic part of the equation that now is estimated locally
and for each sampling point:

β̂i = [X ′WiX]−1 [X ′Wiy] ; i = 1, 2, ..., R (2)

where

Wi =


αi1 0 0 . . . 0
0 αi2 0 . . . 0
0 0 αi3 . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . αiR

 (3)

The terms {αir; r = 1, 2, ..., R} are the local weights corresponding to the
local estimation of the model 1 in point i. The local weights usually are
constrained to the unit interval: 0 6 αir 6 1 as a way of normalizing
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the influence that observation r has on the estimation of the coefficients
corresponding to observation i. The local estimate of 2 can be expressed as:

β̂i =
(

R∑
r=1

αirx
′

rxr

)−1( R∑
r=1

αirx
′

ryr

)
; i = 1, 2, ..., R (4)

being xr the (1xk) vector of observations corresponding to point r. The
interesting question with equation 4 is that it clearly reflects that this is a
problem of information: the points surrounding observation i do not have the
same quantity of information in relation to the behaviour of the equation 1 in
point i. Expressed in other terms, there is a problem of heteroskedasticity in
the equation pertaining to observation i according to the sequence of weights
{αir; r = 1, 2, ..., R}. Obviously, the next problem is the quantification of these
weights (for every point i!) which amounts to the construction of a global (RxR)
weighting matrix:

W =


0 α12 α13 . . . α1R

α21 0 α23 . . . α2R

α31 α32 0 . . . α3R

. . . . . . . . . . . . . . .

αR1 αR2 αR3 . . . 0

 =


α1.

α2.

α3.

. . .

αR.

 ; Wi = diag (αi.) (5)

It is clear that the GWR estimates will be unbiased only if the assumption
of global homogeneity, implicit in 1, is true. In fact, the GWR algorithm will
produce a sequence of locally weighted least squares estimates, unbiased in
every point of the sampling space and optimal in the sense that the variance of
these estimates will be minimal. Obviously, if the instability in the non-random
component of equation of 1 is serious, the GWR algorithm (as said, a type of
feasible generalized least squares estimate) will of little help.

By convention, it is assumed that the influence of the information of point
i in the local estimation of the slopes corresponding to the same point i is zero
(the main diagonal of matrix W is zero). The reason, the same as with the
construction of the spatial weight matrix used in spatial models, is to assure the
identification of the model. The literature on GWR suggest specifying the α′s
weigths according to some simple function of the distance; for example:
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•αir =
{

1 dir < d

0 dir > d

•αir = exp
[
− 1

2
(
dir

d

)2]
•αir =


[
1−

(
dir

d

)2]2
dir < d

0 dir > d


(6)

where d is the bandwidth of the algorithm. One of the main problems of
this methodology is related to the determination of the optimal value for the
bandwidth. There are several alternatives altough the most popular is the so-
called cross-validation approach, which amounts to choosing the value of d that
minimizes the (mean square) prediction error of the GWR estimation.

3 Criteria to define the ’local neighbors’.

y = Γy + xβ + ε (7)

where y and ε are (n× 1) vectors, x is a (n× k) matrix, β is a (k× 1) vector of
parameters and Γ is a (n × n) matrix of interaction coefficients. The model is
underidentified. A solution, perhaps the most popular, consists of introducing
some structure in the matrix Γ, parametrizing the spatial interaction coefficients
as, for example: Γ = ρW , ρ is a parameter and W a matrix of weights. The
term yW = Wy that, consequently, appears on the right hand side (rhs, form
now on) of the equation is called the spatial lag of the endogenous variable. At
this point it is worth to highlight a couple of questions:

(i) The weighting matrix can be constructed in different ways following, for
example, some interaction hypothesis. Each hypothesis will result in a
different weighting matrix leading to a different spatial lag. In sum, different
weighting matrices amounts to different models.

(ii) There are some general guidelines about how to specify a weighting matrix
using concepts like nearness, accessibility, influence, etc. Different models
might require different interaction channels that are not necessarily known.
This implies uncertainty and diffuse priors.

Corrado and Fingleton (2011) discuss the construction of a weighting matrix
based on theoretical considerations (they wonder about the information that
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the weights of a weighting matrix should contain). We prefer to focus on the
statistical treatment of such uncertainty.

Let us assume that we have a set of N linearly independent weighting
matrices, Υ = {W1;W2; . . . ;WN}. Usually N corresponds to a small number
of different competing matrices but in some cases this number may be quite
large, reflecting a situation of great uncertainty. As said, each matrix generates
a different spatial lag and a different spatial model. These matrices may be
related by different restrictions, resulting in a series of nested models; if the
matrices are not related, the sequence of spatial models will be non-nested.

Two weighting matrices may be nested, for example, in the cases of binary
rook-type and queen-type movements: all the links of the first matrix are
contained in the second matrix which include also some other non-zero links.
Discriminating between these two matrices is not difficult using the techniques
for selecting between nested models; for example, in a maximum-likelihood
approach (we would need the assumption of normality), a Lagrange Multiplier
can be used.

3.1 The J test

For the case of non-nested matrices, we may find several proposals in the
literature. Anselin (1984) provides the appropriate Cox-statistic for the case
of:

H0 : y = ρ1W1y + x1β1 + ε1

HA : y = ρ2W2y + x2β2 + ε2

}
(8)

that Leenders (2002) converts into the J-test using an augmented regression like
the following:

y = (1− α) [ρ1W1y + x1β1] + α
[
ρ̂2W2y + x2β̂2

]
+ ν (9)

being ρ̂2 and β̂2 the corresponding maximum-likelihood estimates (ML from now
on) of the respective parameters on a separate estimation of HA and generalizes
also to the comparison of a null model against N different models. Kelejian
(2008) maintains the approach of Leenders although in a SARAR framework,
which requires GMM estimators:
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y = ρiWiy + xiβi + ui = Ziγi + ui (10)

ui = λiMiui + vi

with i = 1, 2, ...., N , Zi = (Wiy, xi) and γi = (ρi, β) . The J-test for selecting a
weighting matrix corresponds to the case where xi = x; Wi = Mi but Wi 6= Wj .
Let us assume that there are two alternatives, of a SARAR (1, 1) type. The
subindex 0 indicates that it is the model of the null hypothesis:

y = X0β0 + λ0W0y + u0 (11)

u0 = ρ0M0u0 + ε0

where y denotes the R× 1 vector of observations of the dependent variable, X0

denotes the R × k matrix of regressors (in our case it could contain a single
constant term). Both variables, X0 and y, have been measured without error.
W0 and M0 are R×R spatial weighting matrices defined a priori, β0 is a k× 1
vector of unknown parameters, λ0 and ρ0 are unknown scalar parameters, u0

denotes the R×1 vector of errors terms and ε0 is an R×1 vector of innovations,
assuming that ε0 ∼ i.i.d.

(
0, σ2IR

)
. This is called Model0.

Under the alternative hypothesis, the data-generating process has a similar
structure, Model1:

y = X1β1 + λ1W1y + u1 (12)

u1 = ρ1M1u1 + ε1

Premultiplying Model0 by (IR − ρ0M0) yields:

y0 (ρ) = Z0 (ρ) γ + ε0 (13)

where y0 (ρ) = (IR − ρ0M0) y, Z0 (ρ) = (IR − ρ0M0)Z0, with Z0 =
(X0β0, ρ0W0y) and γ

′ =
(
β
′
, λ
)
. The same transformation can be applied

to Model1.
In this context, the J-test can been seen as the test of the following

augmented equation:
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y0 (ρ) = Z0 (ρ) γ + φ [Z1 (ρ1) γ̂1] + ε0 (14)

where γ̂1 represents a consistent estimator of γ1 and φ is a parameter whose
value, under the null hypothesis, is φ = 0.

The parameters to be estimated are, for Model0, β0, λ0, ρ0, σ2
0 and, for

Model1, β1, λ1, ρ1 and the variance σ2
1 . These coefficients can be obtained by

the generalized method of moments, GMM , suggested by Kelejian and Prucha
(1999) or by the recent quasi-maximum likelihood method, QML, proposed by
Burridge and Fingleton (2010). Below we present briefly the GMM procedure
of Kelejian and Prucha.

As the model (14) contains a spatial lag of the dependent variable, the
estimation method proposed is based on instrumental variables. Let the list of
instruments be:

T0 = (X0,W0X0, . . . ,W
r
0X0,M0W0X0, . . . ,M0W

r
0X0)LI

T1 = (X1,W1X1, . . . ,W
r
1X1,M1W1X1, . . . ,M1W

r
1X1)LI

T̄ =
(
X̄,WX̄, . . . ,W rX̄,MWX̄, . . . ,MW rX̄

)
LI

where X̄ = (X0, X1), subindex LI indicates that the columns of the
corresponding matrices are linearly independent; typically, r ≤ 2. Kelejian
suggests the following procedure:

1. Estimate the null hypothesis model of (11) by two-stage least squares,
2SLS, using the matrix of instruments T0; we obtain the residual vector
û0. Repeat this procedure for the alternative model (12) by 2SLS, using
the matrix of instruments T1.

2. Take γ̂1 appearing in (14) as the 2SLS estimator based on matrix T1 for
the alternative model.

3. Using the estimated residuals of null model, û0, estimate the parameter
ρ0 by the generalized moments procedure, GMM , proposed by Kelejian
and Prucha (1998). Replace ρ0 with ρ̂0 and estimate the resulting model
by 2SLS using instrument matrix T0. Obtain the residual vector, ε̂, and
use this vector to estimate the corresponding variance: σ̂2

ε = ε̂
′
ε̂/R. This

is the generalized spatial two-stage least squares procedure.
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4. Replace ρ in (14) by ρ̂0. Considering F = (Z1γ̂1) as the empirical
counterpart to (14) let

y0 (ρ̂) ≈ Z0 (ρ̂0) γ + φF + ε0 (15)

5. Estimate (15) by 2SLS using T̄ as instruments. Specifically, the set
of regressors of (15) is denoted by S = (Z0 (ρ̂) , F ), and the regression
parameters as η′ =

(
γ
′
, φ
)
. Note that, under the null hypothesis model,

η
′

0 =
(
γ
′
, 0
)
. Let Ŝ = PS ≡

(
Ẑ0 (ρ̂) , F̂

)
where P = T̄

(
T̄
′
T̄
)−1

T̄
′ , so

the 2SLS estimator of η is: η̂ =
(
Ŝ
′
Ŝ
)−1

Ŝ
′
y0 (ρ̂).

Kelejian (2008) shows that

R1/2 (η̂ − η) D−→ N

0, σ2
ε plim
R→∞

(
Ŝ
′
Ŝ

R

)−1
 (16)

σ̂2
ε

P−→ σ2
ε

Clearly, for finite samples the inference can be based on an approximation
such as:

η̂ ≈ N
[
η, σ̂2

ε

(
Ŝ
′
Ŝ
)−1

]
(17)

Let k̄ = k + 2; η̂′ =
(
γ̂
′
, φ̂
)
; V̂φ̂ be the estimated variance corresponding

to φ̂, wich appears in the (k + 2) × (k + 2) entry of the k̄ × k̄ matrix (17),
σ̂2
ε

(
Ŝ
′
Ŝ
)−1

. Then, a Wald test of H0: φ = 0 against H1: φ 6= 0, at the α%
level of significance would be to reject H0 if

φ̂
′
V̂ −1
φ̂
φ̂ > χ2

1−α (1) (18)

As an alternative to the asymptotic distribution, Burridge and Fingleton
(2010) suggest a bootstrap procedure with better properties for finite samples.
As a generalization of this procedure, Kelejian proposes a limited number, g ≥ 1,
of alternatives of the same type, in which Model0 is not nested.
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The J-test works reasonably well for finite samples, although it involves
some problems of power, especially when the rival matrices are very close. For
further details, see Burridge and Fingleton (2010).

We shall remember that our objective is to select the most informative
weighting matrix assuming dependence between x and y. In short, the problem
of interest is: X0 = X1 = x, ρ0 = ρ1 = 0, but W0 6= W1. In other words, there
are two models with same explanatory variable, and no spatial autocorrelation
in the respective error terms, Model0 and Model1; but the weighting matrices
differ. The resulting specification is as follows:

y = βjx+ λjWjx+ uj , j = 0, 1 (19)

This expression is a reformulation of (11), considering Wjy = Wjx.
In sum, it is worth to highlight that there are few alternative procedures

for selecting the correct weighting matrix. This procedure of the J-test aims to
determine the spatial setting on which the rest of the analysis is based.

Given the importance of this decision, the non-parametric chapter presents
an alternative procedure to compete with the J-test.

3.2 The entropy criterion

The purpose of this section is to present a new non-parametric procedure for
selecting a weighting matrix. The selection criterion is based on the information
content existing in the Space for the relation we are working with; this relation
may be, or not, of a causal type. The measure of information that we use is
based on a reformulation of the traditional entropy indices in terms of what is
called symbolic entropy, and it does not depend on the priors of the practitioner.

As explained in Matilla and Ruiz (2008), the idea is, first, to transform the
series into a sequence of symbols which should capture the relevant information.
Then we translate the inference to the space of symbols using appropriate
techniques.

Beginning with the symbolization process, assume that {xs}s∈S and {ys}s∈S
are two spatial processes, where S is a set of locations in Space. Denote by
Γn = {σ1, σ2, . . . , σn} the set of symbols defined by the practitioner; σi, for
i = 1, 2, . . . , l, is a symbol. Symbolizing a process is defining a map

f : {xs}s∈S → Γl (20)
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such that each element xs is associated to a single symbol f (xs) = σis with
is ∈ {1, 2, . . . , l}. We say that location s ∈ S is of the σi − type, relative to
the series {xs}s∈S , if and only if f(xs) = σis . We call f the symbolization map.
The same process can be followed for the series ys.

Denote by{Zs}s∈S a bivariate process as:

Zs = {xs, ys} (21)

For this case, we define the set of symbols Ωl as the direct product of the two
sets Γl, that is, Ω2

l = Γl × Γl whose elements are of the form ηij =
(
σxi , σ

y
j

)
.

The symbolization function of the bivariate process would be

g : {Zs}s∈S → Ω2
l = Γl × Γl (22)

defined by

g (Zs = (xs, ys)) = (f (xs) , f (ys)) = ηij =
(
σxi , σ

y
j

)
(23)

We say that s is ηij − type for Z = (x, y) if and only if s is σxi − type for x
and σyj − type for y.

In the following, we are going to use the following symbolization function f
. Let Mx

e be the median of the univariate spatial process {xs}s∈S and define
the indicator function

τs =
{

1 if xs ≥Mx
e

0 otherwise
(24)

Let m ≥ 2 be the embedding dimension, defined by the practitioner. For
each s ∈ S, let Ns be the set formed by the (m− 1) neighbours s. We use
the term m − surrounding to denote the set formed by each s and Ns, such
that m − surrounding xm (s) =

(
xs, xs1 , . . . , xsm−1

)
. We define the indicator

function for each si with i = 1, 2, . . . ,m− 1:

ιssi =
{

0 if τs 6= τsi

1 otherwise
(25)
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Finally, we have a symbolization map for the spatial process {xs}s∈S as
f : {xs}s∈S → Γm, where:

f (xs) =
m−1∑
i=1

ιssi
(26)

Γm = {0, 1, . . . ,m− 1}. The cardinality of Γm is equal to m.
Moreover, we need to introduce some fundamental definitions:

Definition 1: The Shannon entropy, h (x), of a discrete random variable x is:
h (x) = −

n∑
i=1
p (xi) ln (p (xi)).

Definition 2: The entropy h (x, y) of a pair of discrete random variables (x, y)
with joint distribution p (x, y) is: h (x, y) = −

∑
x

∑
y
p (x, y) ln (p (x, y)).

Definition 3: Conditional entropy h (x|y) with distribution p (x, y) is defined
as: h (x|y) = −

∑
x

∑
y
p (x, y) ln (p (x|y)).

The last index, h (x|y), is the entropy of x that remains when y has been
observed.

These entropy measures can be adapted to the empirical distribution of the
symbols. Once the series has been symbolized, for a embedding dimension
m ≥ 2, we can calculate the absolute and relative frequency of the collections
of symbols σxis ∈ Γl and σyjs

∈ Γl.
The absolute frequency of symbol σxi is:

nσx
i

= # {s ∈ S|s is σxi − type for x} (27)

Similarly, for series {ys}s∈S , the absolute frequency of symbol σyj is:

nσy
j

= #
{
s ∈ S|s is σyj − type for y

}
(28)

Next, the relative frequencies can also be estimated:

p (σxi ) ≡ pσx
i

= # {s ∈ S|s is σxi − type for x}
|S|

=
nσx

i

|S|
(29)

p
(
σyj
)
≡ pσy

j
=

#
{
s ∈ S|s is σyj − type for y

}
|S|

=
nσy

j

|S|
(30)

where |S| denotes the cardinal of set S; in general |S| = R.
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Similarly, we calculate the relative frequency for ηij ∈ Ω2
l :

p (ηij) ≡ pηij = # {s ∈ S|s is ηij − type}
|S|

=
nηij

|S|
(31)

Finally, the symbolic entropy for the two − dimensional spatial series
{Zs}s∈S is:

hZ (m) = −
∑
η∈Ω2

m

p (η) ln (p (η)) (32)

We can obtain the marginal symbolic entropies as

hx (m) = −
∑

σx∈Γm

p (σx) ln (p (σx)) (33)

hy (m) = −
∑

σy∈Γm

p (σy) ln (p (σy)) (34)

In turn, we can obtain the symbolic entropy of y, conditioned by the
occurrence of symbol σx in x as:

hy|σx (m) = −
∑

σy∈Γm

p (σy|σx) ln (p (σy|σx)) (35)

We can also estimate the conditional symbolic entropy of ys given xs:

hy|x (m) =
∑

σx∈Γm

p (σx)hy|σx (m) (36)

Now we can move to the problem of choosing a weighting matrix for the
relationship between variables x and y. This selection will be made among a
finite set of weighting matrices, relevant for the relationship between the two
processes. Let us denote by W (x, y) = {W| ∈ J } this set of matrices, where
J is a set of indices. We refer to W (x, y) as the spatial-dependence structure
set between x and y.

Denote by K a subset of Γm and let W ∈ W (x, y) be a member of the set
of matrices. We can define

KxW = {σx ∈ K|σx is admissible forWx} . (37)

where admissible indicates that the probability of occurrence of the symbol is
positive.
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By Γxm we denote the set of symbols that are admissible for {xs}s∈S . Let
W0 ∈ W (x, y) be the most informative weighting matrix for the relationship
between x and y. Given the spatial process {ys}s∈S , there is a subset K ⊆ Γm
such that p

(
KxW0
|σy
)
> p (K∗xW |σy) for all K∗ ⊆ Γm, W ∈ W (x, y) \ {W0} and

σy ∈ Γym. Then

hW0x|y (m) = −
∑
σy∈Γy

p (σy)

 ∑
σx∈Kx

Wo

p (σx|σy) ln (p (σx|σy))

 ≤ (38)

≤ −
∑
σy∈Γy

pσy

 ∑
σx∈K∗x

W

p (σx|σy) ln (p (σx|σy))

 = hWx|y (m)

We have thus proved the following theorem.

Theorem 1: Let {xs}s∈S and {ys}s∈S two spatial processes. For a fixed
embedding dimension m ≥ 2, with m ∈ N, if the most important weighting
matrix that reveals the spatial-dependence structure between x and y is
W0 ∈ W (x, y) then

hW0x|y (m) = min
W∈W(x,y)

{
hWx|y (m)

}
. (39)

4 Monte Carlo Experiment

In this section, we generate a large number of samples from differents data
generation process (D.G.P.) to study the performance of different proposals: J
test, Bayesian approach, averaging estimator and conditional symbolic entropy.

Our principal interest is to detect the weighting matrix more informative
between different alternatives. For this, we having the explanatory variable, x,
the same in the all models, but the spatial structures differ, so that W0 = Wi,
where i is the matrix for the i− th alternative model.

A great variety of alternative of weighting matrices are possible for our study,
however we restrict our attention to k-nearest neighbors and weights distance-
based. Also, we can work with different models: Spatial autoregressive process
(SAR) or spatial error model (SEM) or SARAR(p,q).
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Each experiment starts by obtaining a random map in a hypothetical
two-dimensional space. This irregular map is reflected on the corresponding
normalized W matrix. In the first case, W is based on a matrix of 1s and
0s denoting contiguous and non-contiguous regions, respectively, subsequently
normalized so that rows sum to 1. For the second case, distance-based weigth,
W is constructed using wij = d−2

ij for dij < D, where D is a cut-distance, and
dij = 0 otherwise, denoting dijas the straigh-line (Euclidean) distance between
regions i ans j.

The following global parameters are involved in the D.G.P.:

N ∈ {100, 300, 600, 1000} , ρ ∈ {0.1; 0.3; 0.5; 0.7; 0.9} , m ∈ {4, 5, 6, 7, 8} (40)

where N is the sample size, ρ is the spatial autocorrelation parameter and m

is usually known as the embedding dimension. Briefly, the latter corresponds to
the set made by each observation and its m− 1 neighbours.

In the experiment, we want to simulate both linear and non-linear relations
between the variables x and y.

In the first case, linearity, we control the relation by, for instance, the
coefficient of determination expected from the equation. Based on a specification
like this:

y = βx+ θWx+ ε, (41)

the strength of the relation can be deduced by the expected R2
y/x coefficient.

Under equation (41), the expected coefficient of determination between
the variables is equal to (assuming an unit variance of x and in ε as well as
incorrelation between the two variables):

R2
y/x =

β2 +
(
θ2
/m−1

)
β2 +

(
θ2
/m−1

)
+ 1

We have considered different values for this coefficient:

R2
y/x ∈ {0.3; 0.5; 0.7; 0.9} (42)

For simplicity, in all cases we maintain β = 0.5. The spatial lag parameter
of x, θ, is obtained by deduction: θ =

√
(1−m)(β2(1−R2)−R2)

1−R2 .
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[TO BE COMPLETED]

5 Conclusions

[TO BE COMPLETED]
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