
A spatial panel data version of the knowledge
capital model

Daniel Bekesi, Christoph Hammer, Matthias Koch*, Christian Sommeregger

Vienna University of Economics and Business; *mailto: Matthias.Koch@wu.ac.at

Abstract

This paper attempts to analyze the impact of knowledge and knowledge spillovers
on regional total factor productivity (TFP) in Europe. Regional patent stocks are
used as a proxy for knowledge, and TFP is measured in terms of a superlative
index. We follow Fischer et. al (2008) by using a MAR-spillover model and a data
set covering 203 regions for six time periods. In order to estimate the impact of
knowledge stocks we use a spatial autoregressive model with random e¤ects, which
allows for three kinds of spatial dependence: Spatial correlation in the innovations,
the exogenous and the endogenous variables. The results suggest that there is a
signi�cant positive impact of knowledge on regional TFP levels, and that knowledge
spills over to neighboring regions. These spillovers decay exponentially with distance
at a rate of 8%. Using Monte Carlo simulations we calculate the distribution of direct
and indirect e¤ects. The average elasticity of a region�s TFP with respect to its own
knowledge stock is 0.1 and highly signi�cant. The average e¤ect of all other regions�
TFP is about 50% higher, which con�rms that the cross-country externalities are
important in the measuring of the impact.

This paper will be presented at the European Regional Summit in Barcelona 2011
and the Annual Meeting of the Austrian Economic Association in Graz 2011.

JEL Classi�cations: O40, C59
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1 Introduction

This paper attempts to analyze the impact of knowledge on regional total
factor productivity (TFP) in Europe. Regional TFP can be seen as a proxy for
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technological progress and hence is one key determinant in regional economic
growth. This study focuses on the empirical relationship between knowledge
and TFP by allowing for three kinds of spatial dependence: Spatial correlation
in the innovations, the exogenous and the endogenous variables.

The model is based on the approach presented by Fischer, Scherngell and Reis-
man (2008), which will be labeled as FSR- model. The FSR- model is itself
based on the knowledge capital model introduced by Griliches (1979), that
"has been applied in hundreds of empirical studies on �rm-level productivity
and also extended to macroeconomic growth models" (Doraszelski and Jau-
mandreu 2006: p2). To ensure that the various agents, individuals, networks
and enterprises, which are involved in the innovative process are integrated
into a coherent unit, the FSR- Model treats regions as the unit of observation.
One innovation of the FSR model was to add regional external knowledge
stocks to the Griliches model, recognizing that spillover are in close relation
with the production of knowledge. FSR 2008 shows that these spillovers are
strongly localized.

The current paper explores the model provided by Fischer et al (2008), by in-
cluding a spatial lag of the TFP. This is motivated by Le Sage and Pace (2009)
where they argue that a spatial lag can be caused be by time dependence, can
reduce omitted variable bias and model uncertainty. Hence, ignoring the possi-
ble spatial lag can cause biased estimations. Incorporating a spatial lag in the
TFP- variable makes it a little bit more complicated to distinguish between
direct and indirect e¤ects. We �nd out that the average elasticity of a region�s
TFP with respect to a change to the other regions�knowledge stocks is almost
two times higher that the average elasticity with respect to its own knowledge
stock.

We use the same data as in Fischer et al. (2008) 1 , which consists of 203 Eu-
ropean NUTS-2 regions covering the 15 pre-2004 European Union members
during 1997-2002. Since the regional policy of the European Union is essen-
tially based on the NUTS-2 region level, NUTS-2 represents for our model a
useful geographic scale.

The remainder of this paper is organized as follows: In the second section
we will brie�y review the FSR model and introduce the extension mentioned
earlier. The third section is dedicated to the estimation and interpretation
of the model. Here the econometric speci�cation and estimation strategy are
described in more detail. Furthermore the calculation of direct and indirect
e¤ects will be discussed. The fourth section describes the used data, explains
how relevant variables are constructed and ends by presenting our empirical
results. Finally section �ve summarizes our �ndings and concludes the article.

1 The data set was supplied by the Institute for Economic Geography and GIScience
(Vienna University of Economics and Business)
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2 The model approach

This section provides the background for our empirical model. First it starts
by revisiting the empirical formulation of the FSR model and provides some
conceptual background. For more details regrading the FSR model see Fischer
et al (2008). The second subsection adds a spatial lag of the dependent variable
to the empirical form of the FSR- model.

2.1 Basic Model

We use the FSR- model as our model basis and start with Eq. (8) from FSR
(2008) in log-additive form:

log(fit) = log(kit)�1 + log(
nX
j 6=i
wij(�)kj�1)�2 + "it (1)

where 1 � i � n and 1 � t � T or in matrix notation:

log(f) = log(k)�1 + log(W(�)k�1)�2 + ":

Here fit denotes the TFP of region i at time t; which is assumed to be
generated by a Cobb-Douglas styled function. This function depends on the
region-internal kit and spatially weighted region-external knowledge stocksPn
j 6=iwij(�)kj�1, which may be also interpreted as the pool of extra-regional

knowledge productive in region i. As the literature suggests, external knowl-
edge does not become e¤ective in production immediately [ref]. Here, we as-
sume a one period time lag. We further note that this speci�c functional form
implies that �1 and �2 are the elasticities corresponding to internal and ex-
ternal knowledge capital.

Another noteworthy property of the FSR- model regards the de�nition of wij.

wij(�) = exp(��dij) where � = 0 (2)

As can be seen from Eq. (2), it is assumed that wij is an exponential function
of the distance between i and j and the decay constant �. dij is the distance be-
tween region i and j measured as great circle distance between their economic
centers. If � = 0 then wij = 1 and distance does not matter for the ability to
internalize external knowledge. However, if � > 0 then distance matters: The
greater the distance between i and j; the smaller wij and therefore region j0s
contribution to region i0s external knowledge pool. Consequently, this setup
implies that knowledge is exposed to spatial depreciation with a constant rate
�.
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2.2 Extended Model

The novel feature of our paper is the incorporation of a �rst-order spatial lag
in dependent variable. Therefore the regional TFP is no longer exclusively
driven by the knowledge stocks of the regions and the spatially lagged extra-
regional knowledge stocks, but also by the spatially lagged TFP. LeSage and
Pace (2009) give three possible motivations for this spatial lag: time depen-
dence, omitted variable bias and model uncertainty. Each of these motivations
can be seen as relevant for the FSR model. Hence it seems necessary to incor-
porate a spatially lagged TFP because a failure to do so would lead to biased
estimations. Therefore one should treat the estimates of the FSR model with
caution.

Adding a spatial lag of the dependent variable to the FSR- model yields Eq.
(3).

log(f) = �M log(f) + log(k)�1 + log(W(�)k�1)�2 + " (3)
whereM = 1=m (IT 
M) ;W(�) = IT 
W(�):

log(f) denotes the stacked vector of the logarithmic TFPs cross-sections with
dimensions nT � 1: Likewise log(W(�)k�1) and log(k) are the nT � 1 vectors
of the spatially lagged and non-lagged capital-stocks. IT denotes the identity
matrix of dimension T . We use two di¤erent n � n weight matrices: W(�)
and M. The typical element of W(�) is de�ned by (2). Note that W(�) is
a function of the decay parameter � and therefore Eq. (3) has a no linear
representation.M denotes a binary spatial weight matrix, where regions with
a common border take the value of 1 and 0 otherwise. Assuming constant
weights throughout time we are able to de�ne the matrices W(�) and M
respectively, where we make use of the convenient Kronecker operator 
. � is
the autoregressive parameter and it is assumed that j�j < 1. The rows of M
are normalized by the largest absolute characteristic root ofM denoted by m.
Due to our parameter space restriction we can solve Eq. (3) for log(f):

log(f) = (IT 
A(�)�1)
h
log(k)�1 + log(W(�)k�1)�2 + "

i
where A(�) = In � �=mM

Hence if � 6= 0 we can no longer interpret �1 as elasticity like we do in Eq. (1),
since @ log(fit)

@ log(Kit)
6= �1. This problem will be addressed in Section 3.3. Additionally

if � = 0, then (IT 
A�1) = ITn and the model reduces to the basic model.

3 Model estimation and interpretation

This section provides the necessary background for the model estimation and
interpretation. Due to the nonlinearity of our model, caused by W(�) we
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had to program the Maximum Likelihood estimator ourself. If faced with this
task the programming of the log-determinant becomes crucial. Therefore, we
�rst focus in the next subsection on the speci�ed error term and calculate
the variance- covariance matrix of the TFP given the data and then discuss
the computational issues implied by the error structure. The last subsection
discusses the necessary background for the model interpretation.

3.1 Speci�cation of the Error Term

We now incorporate the third kind of spatial dependence into our model, re-
�ecting possible spatial dependence in the error term. Note that the data has
a panel structure. Therefore, we use a random e¤ects model. Additionally
remark that unlike in the case of the linear regression model, ignoring the
structure of the variance- covariance matrix will lead in spatially autocorre-
lated models to biased estimations if Maximum Likelihood is used. Hence we
use the error structure given by Eqs. (4) and (5)

"t = �+ �t where � �N(0; In�2�) (4)

�t = �=mM�t + �t where �t�N(0; In�2�). (5)
The vectors in Eqs. (4) and (5) now denote one cross-section at time t where
"t = ("1;t; :::"n;t)

0, �t = (�1;t; :::�n;t)
0 and �t = (�1;t; :::�n;t)

0. Both innovations
�it and �it are independently and normal distributed with the corresponding
variances �2� and �

2
�. The used weight matrix M is the same 2 as in Eq. (3).

Since we assume that j�j < 1 we can solve Eq. (5), put it into Eq. (4) and get
Eq. (6):

"t = �+A(�)
�1�t (6)

Note that for � = 0 the speci�cation reduces to a standard random e¤ects
model. Consequently, the stacked vector " can be written as:

" = �T 
 �+
�
IT 
A(�)�1

�
�

where �t denotes a row vector of ones with the length T . Under these assump-
tions the variance- covariance matrix of the TFP given the knowledge stocks
is:


 := E("0") =
�
IT 
A(�)�1

� h
(�0T �T 
 In�2� + (IT 
 (A(�)0A(�))�1�2�

i
(7)

2 There has been pointed out that for models like...with MC- Studies that ML
results in biased estimates. For example Bivand [SEA 2010] pointed out... Observe
that the bias only occurs if both weigth maritices are the same and no pannel
structure is assumed. In order to verify our programing we conducted also MCs
and it seems as long as �� and �� are di¤erent, that the Bias fanishes. Since the
hypothesis �� = �� has a p- value of... we conclude that our estimation method is
unbiased.
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3.2 Computational Issues: the Log-Determinant

Due to the fact that the calculation of the log-determinant of a 1213x1213
matrix can be considerably resource-consuming we carried out some simpli�-
cations: Following the suggestions of Wansbeek and Kapteyn (1983) the de-
terminant of our variance-covariance matrix can be written as

j
j = �2�
���(A(�)0A(�))�1���T �����T�

2
�

�2�
In + (A(�)

0A(�))�1
����� ���(A(�)0A(�))�1���T�1 .

(8)
Following Gri¢ th (1988) we further simplify this expression by making use of:

jA(x)j =
nY
i=1

�
1� xmi

m

�
(9)

�����T�� In + (A(�)0A(�))�1
����� =

nY
i=1

 
T�2�
�2�

+
�
1� �mi

m

��2!
where mi denotes the eigenvalues ofM. In a �nal step we put Eq. (9) and Eq.
(8) together and take logs to end up with:

log(j
j) = n log(�2�) + (�2T ) log(�0nr(�)) + log
 
T�2�
�2�

+ 1=r(�)0r(�)

!
� 2(T � 1) log(r(�)0r(�)) (10)

where r(x) = �n� x
m
m. Here r is a n by 1 vector andm is the vector containing

the eigenvalues of M. Since the innovations are assumed to be drawn from a
normal distribution, we now can write the log likelihood function as:

LL(�; �; �1; �2; �; �
2
�; �

2
�) =

�nT
2

log(2�)� 1
2
log(j
j)� 1

2

�
log(f)�\log(f)

�0

�1

�
log(f)�\log(f)

�
(11)

where\log(f) are the �tted values of log(f) for given values of �; �; �1; �2; �; �2�; �2�.
To further improve computational e¢ ciency we concentrated out the Parame-
ters �1 and �2: As can be seen from Eq. (7) the property of homoscedasticity
does not hold, consequently the usual OLS estimator would be ine¢ cient. In
order to estimate �1 and �2 e¢ ciently we use in our optimization routine the
standard GLS estimator. 3

�̂(�; �; �; �2�; �
2
�) = (X

0
�1X)�1X0
�1 log(f) (12)

3 All estimations were carried out within the Matlab Software Package. For the
maximization of the loglikelihood-function we used the fminsearch procedure, the
Hessian was computed with help of the DERIVEST package. For further details on
the utilized methods have a look at the appendix.
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where X = [log(k), log(W(�)k�1)]

3.3 Interpretation of the Model

In this section we provide a (possible) interpretation of the model given in Eq.
(3). Like we brie�y mentioned in 2.2, unlike to the basic model the coe¢ cients
�1 and �2 for � 6= 0 can not longer be interpreted as elasticity, since for
Eq. (3): @ log(fit)

@ log(kit)
6= �1 and @ log(fit)

@ log(Wkit�1)
6= �2. Unlike to a simple linear model

estimated with OLS, we have to consider two important issues regarding the
interpretation of the model coe¢ cients:

First, due to the spatial dependence of the dependent variable, each region�s
TFP has di¤erent elasticities with respect to a change in any region�s knowl-
edge stock. Hence our model provides 41.209 di¤erent elasticities regarding a
change in the knowledge stock of period t. This interpretation issue is pointed
out by LeSage and Penn (2009: p34). We follow their suggestion and provide
average direct and indirect e¤ects.

Second, in order to get comparable interpretations for �1 and �2 we have to
take into account, that the lagged knowledge stocks represent a weighted av-
erage. This is particular important, since it makes a di¤erence if the weighted
average is increased due to a change of a near or distanced region. This ef-
fect is a result of the di¤erent spatial dependencies represented by the terms
log

�
W(�)k�1

�
and �M log(f).

We focus now on the mathematical treatment of these two e¤ects. Stating our
regression model once again:

log(f) = �M log(f) + log(k)�1 + log(W(�)k�1)�2 + "

Following and Penn, (2009: p34) we calculate the matrices of the partial deriv-
atives S1 and S2 which are generally called e¤ect matrices.

S1 = (IT 
A(�)�1)�1 (13)

S2 = (IT 
A(�)�1)JZ�2 where z = log(W(�)k�1) (14)

S1 and S2 are nT by nT matrices with the typical element sij which denotes
the partial derivative of log(f) with respect to log(k). JZ denotes the Jacobian
of z with respect to log(k�1). The Appendix shows that the typical element
of JZ can be written as Eq. (15):

ji;l =
wi;lPn

p=1wi;pkp
kl (15)

Once S1 and S2 are computed we can establish direct and indirect e¤ects,
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which are conventionally de�ned as the mean of the diagonal elements and the
mean of o¤-diagonal elements of S1 and S2 respectively (LeSage and Penn,
2008: p37).

Ed;j =
trace(Sj)

nT
(16)

Eid;j =
�0nTSj�nT
nT

� Ed;j (17)

Although the calculation of Ed;j and Eid;j are rather simple, it is neither
straightforward how to calculate their standard deviation or their distribu-
tion. Therefore, we follow Elhorst (2010) and simulate the distribution of the
direct and indirect e¤ects by using the variance-covariance matrix implied by
our maximum likelihood estimates:�e�1; e�2; e�; e�; e�; e�2�; e�2��0 = 
0�+ �b�1; b�2; b�; b�; b�; b�2�; b�2��0 (18)

where

0
denotes the upper-triangular Cholesky decomposition of the variance-

covariance matrix resulting from our maximum likelihood estimates, � is a
random vector drawn from N (0; I7), the decorationb represents the ML esti-
mators andethe corresponding Monte Carlo values.

4 Data, variables and empirical results

4.1 Data and Variables

In the compilation of the data set used by FSR two major sources played a
leading role: The Cambridge Econometrics and the European Patent O¢ ce
database. The Cambridge Econometrics database is used to construct the
region-level relative TFP index. The knowledge stocks are proxied by patent
data out of European Patent O¢ ce patent database. Our overall data set
observes 203 European NUTS-2 regions from the 15 pre-2004 European Union
members during 1997-2002. Since the regional policy of the European Union
is essentially based on the NUTS-2 regions and our empirical results can be
of importance for policy makers, NUTS-2 represents for our model a useful
geographic scale.

To overcome index-number-problems inherent in TFP- comparisons a TFP-
index is preferred over ordinary TFP- levels. So it is ensured that the produc-
tivity measure is commensurable across regions and time, which is vital for
panel data analysis. In their analysis FSR (2008) used the index introduced
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by Caves, Christensen, and Diewert (1982) which is transitive and superlative
as well:

log(fit) = (log(qit)�log(qit))�sit�(log(lit)�log(lit))�(1�sit)�(log(cit)�log(cit))
(19)

In Eq. (19) qit; lit and kit denote output, labour input and capital stock and
a bar denotes their corresponding mean. sit denotes the share of labor in the
total production costs, which is a more robust speci�cation in case of imperfect
competition. For qit data on gross value-added at constant prices of 1995 was
used. In order to measure lit; the Cambridge Econometrics Database�s labour
input data was modi�ed so that it captures the di¤erences in the average
annual hours worked and cit; was constructed by summing up gross investment
using the perpetual inventory method.

In this cost-based setup TFP is invariant to exogenous changes in output,
hence it is �uncorrelated with all variables known to be neither causes of
productivity shifts nor to be caused by productivity shifts.�[Hall (1990)].

The second variable of crucial importance is the knowledge capital stock kit.
In order to proxy these stocks for every period and region, EPO patents with
an application date of 1990-2002, were regionally matched and sorted annually
to yield pit. Consequently these �ows are transformed to stocks using:

cit = (1� rc)cit�1 + pit�1 (20)

where rk was set to be 12%,.In case of international patents a fraction was
determined, instead of a full-counting. FSR (2008) note that using patent data
also has some drawbacks: Patenting is inherently a strategic decision, it causes
costs (money, energy) and therefore it is beyond any reasonable doubt that
inventions are merely partly patented (codi�ed). Another problem with this
counting approach is the fact that patents are di¤erently useful: there are large
innovations and patents with virtually no practical use at all. Nevertheless,
to the extended that patents document inventions, an aggregation of them is
very closely related to knowledge capital stocks.

4.2 Empirical Results

In this section we proceed with presenting the estimates from the autoregres-
sive model and comparing them with the results reported by FSR . For this
purpose the ordinary nonlinear GLS model, which neglects spatial correlation
in the error term, the standard FSR model, and our autoregressive FSR model
are shown side by side in table 1.

[INSERT TABLE 1 here]
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The GLS estimates indicate that �1, the elasticity with respect to region-
internal knowledge, is positive and signi�cant. The same is true for �2 which
advocates, in consistence with the spillover literature, that region-external
knowledge also exercises a positive in�uence on a regional TFP. The positive
estimate of � suggests that this in�uence is declining exponentially with dis-
tance at a rate of 8%. In comparison with the FSR- model there are some
notable di¤erences: The GLS model seems to overstate the importance of
knowledge, both the estimates of �1 and �2 are smaller in column two. The
opposite is true for the decay parameter � which is about one percent point
higher in the FSR setting. These �ndings are emphasized by the positive and
highly signi�cant estimate of �; which indicates that spatial autocorrelation
due to neighboring regions is indeed an issue which has to be addressed.

In column 3 we �nally present the estimates of the extended FSR, which in-
corporate the spatial autoregressive lag. As can be seen readily, signs and
signi�cance levels of the parameter estimates are similar to the FSR- model
however their magnitude di¤ers notably: �1 (�2) is about 10% (20%) smaller
than in the FSR- model. On the contrary the estimate of � increases by about
10%, and is close to the estimate achieved with GLS. The parameter on the
AR-term � takes on a value of 0:536 and is highly signi�cant, whereas �, which
describes the spatial correlation in the error term, is reduced drastically. This
reinforces the concerns expressed in section 3.1: Although the estimates of �n
and �� do not di¤er signi�cantly in comparison with FSR, � and � do. Con-
sequently, FSR�s 
 is di¤erent which causes a bias in all the other estimates.
Viewed from a di¤erent angle one could also say that the lagged TFP values in
this setting, have marginal explanatory power, because they include additional
factors which contribute to knowledge and therefore in�uence productivity
positively. Once this issue is accounted for, patent stocks loose somewhat of
their importance, as can be seen from the smaller estimates of the coe¢ cients
�2 and �1:The results put forward our presumption that the standard FSR
model su¤ers from omitted variable bias, which is at least partly corrected
by the introduction of the autoregressive term. This is in line with the recent
work of Fingleton (2010) who states that "... the presence of the endogenous
lag should help mitigate omitted variable bias in spatial regressions"

As already stressed out in section 3.1, in the presence of an autoregressive
term �2 and �1 are no longer equivalent to elasticities. To make our results
comparable to those of FSR we therefore have to calculate the implied mean
total e¤ects with respect to internal (MTI) and spatially discounted external
knowledge (MTE) capital stocks separately and simulate their distribution 4 .
The results are contrasted in Table 2.

4 If we use the de�nitions given in section 3 and derive the mean total e¤ects with
respect to log(k) and log(W(�)k�1) we end up with �0nT (IT 
A(�)

�1)�1�nT =(nT )
and �0nT (IT 
A(�)

�1)�2�nT =(nT ) respectivly.
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extended FSR FSR

mean std mean std

mean total e¤ect of

intra-regional knowledge
0:333 0:056 �1 0:209 0:026

mean total e¤ect of

extra-regional knowledge
0:171 0:039 �2 0:126 0:020

Table 2: Total E¤ect Estimates

Obviously the elasticities in the extended model are higher than the corre-
sponding estimates presented by FSR. Particularly the MTE and MTI exceed
their FSR counterparts (�1 and �2) by 60% and 35% respectively. To complete
our analysis we continue by stating the estimates of the average direct (DE)
and indirect e¤ects (IDE) implied by the autoregressive Model:

mean std p-value

mean direct e¤ect 0:206 0:0248 0:0001

mean indirect e¤ect 0:304 0:0554 0:0001

Table 3: Direct and indirect E¤ect Estimates

As Table 3 shows, both the DE and IDE seem to be positive and highly
signi�cant. This result suggests that, accounted for spatial autocorrelation and
given our estimates of the spatial decay parameter �, on average augmenting
knowledge stocks, exercises a positive e¤ect on TFP directly and indirectly:
Not only that a region bene�ts from rising its stock of knowledge in the �rst
place, it also bene�ts indirectly through feedback from neighboring regions
to which knowledge was spilled over beforehand. This second-order e¤ect is
about 50% higher than the �rst-order-e¤ect. One remarkable consequence is
that it seems more desirable now to raise TFPs by raising extra-regional than
intra-regional knowledge capital.

5 Conclusion

In this paper we augmented the FSR model with a �rst order spatial lag in
order to address OMB-issues. As the results show, both the region internal and
the region external knowledge capital stock have a positive in�uence on TFP.
The importance of region external knowledge suggests that spillovers play
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a signi�cant role: regions, that have a common border with high-knowledge
regions, have signi�cantly higher TFPs themselves. These spillovers, however,
are localized, they decay exponentially with rate of about 8%.

Our estimate of the spatial lag parameter was positive and highly signi�cant.
This suggests that the extra-regional TFP may act as a proxy for multiple
in�uences which are relevant for a regions knowledge, but not covered in the
number of patents. Consistent with this view the coe¢ cient of the intra (extra)
regional patent-stocks was 10% (20%) smaller then reported in the FSRmodel.

In a third step we tried to assess the direct and indirect e¤ects implied by
our estimates. Our simulations showed that both direct and indirect e¤ects
are positive and signi�cant. Notably the indirect e¤ect was about 50% higher
than the direct e¤ect. This piece of evidence stresses out, once more, that
cross-region knowledge spillovers reinforce the impact of knowledge production
activities.
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Appendix

The analytical Jacobian

Given our set z of n equations in n variables k1; :::kn

z � ln(W n�nk)
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or more explicitly

8>>>>>>>>>><>>>>>>>>>>:

ln(
nP
i=1
w1i � ki)

ln(
nP
i=1
w2i � ki)

:::

ln(
nP
i=1
wni � ki)

the ijth Element of the Jacobian Matrix with respect to ln(k) is de�ned as:

Jij �
dzi

d ln(kj)
=

dzj
d(kj)

d ln(kj)

d(kj)

=
wij

nP
s=1
wjs � ks

kj:

Therefore:

zln(k) � J =

26666666666666664

w11
nP
i=1

w1i�ki
k1

w12
nP
i=1

w1i�ki
k2 :::

w1n
nP
i=1

w1i�ki
kn

w21
nP
i=1

w2i�ki
k1

w22
nP
i=1

w2i�ki
k2 :::

w2n
nP
i=1

w2i�ki
kn

::: ::: :::

wn1
nP
i=1

wni�ki
k1

wn2
nP
i=1

wni�ki
k2 :::

wnn
nP
i=1

wni�ki
kn

37777777777777775
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