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Abstract 
 
In this note we compare two approaches to ecological modeling using test data. The first 
one is the “traditional” approach based on Ordinary Least Squares (OLS), assuming 
constancy of parameters across disaggregated spatial units (spatial homogeneity) – an 
assumption that is rarely tenable. The second one is a new approach based on Generalized 
Cross-Entropy (GCE), assuming varying parameters (spatial heterogeneity). These two 
approaches are tested in two real-world applications or cases. The first case is based on 
aggregate data on per-capita GDP for the 17 regions in Spain. The second case is based on 
aggregate data on per-capita taxable income for the five provinces in the region of Flanders 
in Belgium. The performance of each approach is assessed by examining its capability in 
tracking the real – but “unobserved” (by the analyst) – data for the 50 provinces in Spain 
and the 22 districts in Flanders, respectively. The results clearly indicate that the GCE 
varying-parameter approach outperforms the OLS approach in both cases. In addition, the 
ecologically inferred values from GCE are even closer to the known truth than the fitted 
values from applying OLS directly to the disaggregated data. 
 
Key words: Ecological inference, Spatial prediction, Cross-Entropy, Disposable income, 
Spatial heterogeneity 
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1. Introduction  
 

Situations where the only available data are aggregated at a level other than the level of 

interest are common. Despite such inauspicious conditions, some “real-world” applications 

require the use of ecological estimation and inference models. 

However, most efforts to recover disaggregate information from aggregate data 

generally result in “ill-posed” inverse problems, which yield a multitude of feasible 

solutions, due to the lack of sufficient information (JUDGE et al., 2003). Specifically, ill-

posed problems are fundamentally indeterminate, because there are more unknowns than 

data points. 

The purpose of the present note is to compare the performances of two alternative 

approaches to ecological inference. The first one is the “traditional” approach based on 

Ordinary Least Squares (OLS), assuming constancy of parameters across the disaggregated 

spatial units (spatial homogeneity) – an assumption that is rarely tenable, since the 

aggregation process usually generates macro-level observations across which the 

parameters describing individuals may vary (e.g., CHO, 2001). The second one is a new 

approach based on Generalized Cross-Entropy (GCE), assuming varying – i.e., individual 

or subgroup-specific – parameters (spatial heterogeneity). In other words, the GCE 

approach does not take the usual “constancy assumption”. The two approaches will be 

compared in two real-world applications or cases, using a testing procedure. 

 

2. The ecological inference problem 
 

Ecological inference is the process of drawing conclusions about individual- or subgroup-

level behavior from aggregate- or group-level (historically labeled “ecological”) data, when 

no individual- or subgroup data are available. 

A fundamental difficulty with such inferences is that many different possible 

relationships at the individual or subgroup level can generate the same observations at the 

aggregate or group level (KING, 1997; SCHUESSLER, 1999). In the absence of individual- or 

subgroup-level measurement (for example, in the form of survey data), such information 
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needs to be inferred. Another difficulty is that inferences may be subject to the so-called 

“ecological fallacy”. 

 

3. Two alternative approaches to ecological modeling 
 

3.1    OLS assuming homogeneity across space 

 

First, we run a simple OLS regression of yi on xi at the group (regional) level, based on 

available aggregate data: 

 

iii uy +′+= xγα  (1) 

 

where yi  is the observed, aggregate, per-capita income indicator for group (region) i, and xi 

is a vector of explanatory variables for group (region) i. 

Then, we predict the per-capita incomes at the subgroup (sub-regional) level, taking 

some available covariates zij  at the level of the subgroups (sub-regions): 

 

ijijy zγ ′+= ˆˆˆ α  (2) 

 

where yij is the “unobserved”, disaggregate, per-capita income indicator for subgroup (sub-

region) j in group (region) i, and zij is the vector of explanatory variables for subgroup (sub-

region) j in group (region) i. 

A major problem with this approach is the possible aggregation bias, due to the 

(implicit) assumption of constancy or homogeneity of parameters across the spatial units 

(e.g., CHO, 2001). 
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2.1    GME assuming heterogeneity across space 

 

2.1.1 Varying-parameter model 

 

In developing our alternative approach to ecological inference, we take BIDANI and 

RAVALLION (1997) as a point of departure. In their paper, they are dealing with the problem 

of decomposing aggregate (health) indicators using a random-coefficients model in which 

the aggregates are regressed on the population distribution by sub-groups, taking into 

account the statistical properties of the error terms. Their approach allows to test possible 

determinants of the variation in the underlying subgroup indicators.  

To be more precise, BIDANI and RAVALLION (1997) are dealing with the problem of 

retrieving indicators for various sub-groups of a population The latent sub-group values are 

treated as random coefficients in a regression of the observed aggregates on the 

distributional data. To illustrate their approach, consider the following identity: 

 

∑
=

=
iM

j
ijiji yy

1
η  (3) 

 

where  is the aggregate indicator for region i,  is the indicator of the jth sub-region in 

region i, 

iy ijy

ijη  is the population share of sub-region j in i, with ∑ =
=

M

j ij1
1η , and where i = 

1,…,N denotes the regions and j = 1,…,Mi denotes the number of sub-regions in region i. 

The sub-regional indicators are not observed, but the ’s and iy ijη ’s are. If we also 

observe a vector of explanatory variables for region i, , and a vector of explanatory 

variables for sub-region j in region i, , we get  

ix

ijz

 

ijijijiijijijy εα +′+′+= zγxβ  (4) 

 

which, on substituting into (3), yields the following regression: 
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1
)( ηα zγxβ  (5) 

 

where  is a “composite” error term, which is heteroskedastic.  ∑ =
= iM

j ijijiu
1

ηε

Using the regression in (5), we can obtain estimates of the (unobserved or latent) sub-

regional indicators as 

 

ijijiijijijy zγxβ ˆˆˆˆ ′+′+= α  (6) 

 

 

2.1.2 Generalized Cross-Entropy estimation  

 

Basically, the regression in (5) amounts to a standard random-coefficients model (e.g., 

HILDRETH and HOUCK, 1968; SWAMY and TAVLAS, 1995), which can be estimated by using 

Generalized Least Squares (GLS). 

However, instead of using GLS we prefer to use the Generalized Cross-Entropy (GCE) 

method (e.g., GOLAN et al., 1996). GCE has some important advantages over the 

“classical” techniques: unique estimates; reformulation of the fundamentally “ill-posed” 

problem into a “well-posed” problem; etc.1 

The implementation of GCE requires that the parameters of the model are specified as 

linear combinations of some predetermined and discrete support values and unknown 

probabilities (weights). Furthermore, the estimation problem is converted into a constrained 

minimization problem, where the objective function, specified in the equation (7) below, 

consists of the joint cross-entropy. (Note that we do not consider any explanatory variables 

at the aggregate/regional level, .) ix

                                                 
1 Note that GCE does not require the assumption of random drawings from a particular distribution (as, for 
example, in FREEDMAN et al., 1998). Also, GCE is different from the Bayesian approach (e.g., ROSEN et al., 
2001) or the switching-regression approach (e.g., CHO, 2001). 
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Specifically, we define sets of unknown probability vectors =′ ij,αp [ ], 

 [ ] (

)(),...,1( ,, Kpp ijij αα

=′ ij,γp )(),...,1( ,, Kpp ijij γγ 2≥K ), and =′ijµ [ )(),...,1( Gijij µµ ] ( ), and choose the 

corresponding support vectors 

2≥G

=′αs [ ], )(),...,1( Kss αα =′γs [ ], and )(),...,1( Kss γγ =′e  

[ ], for the parameters )(),...,1( Gee ijα , ijγ , and the residual terms , respectively, where iju

ijij ,αα ps′= , ijij ,γγ ps′= , and ijij µe′=ε . In addition, prior information is included through 

specifying the prior probability vectors ,  and , reflecting subjective 

information, informed “guesses”, or any other sample and pre-sample information. In the 

empirical applications below, we use as prior information the OLS estimates at the 

aggregate level, e.g., , etc. 

o
,ijαp o

,ijγp o
ijµ

0
,ˆ ij

OLS
i γγ ps′=

After the appropriate re-parameterization, the complete GCE optimization problem for 

the ecological model, described by the expressions in (3) through (6), can be formulated as  
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subject to  

 

 

 

 
∑
=

′+′+′=
iM

j
ijijijijijiy

1
,, )( ηγγα µezpspsα   i∀  (8)

 
∑∑
==

==
K

k
ij

K

k
ij kpkp

1
,

1
, 1)(;1)( γα    ji,∀    

    ∑
=

=
G

g
ij g

1

1)(µ ji,∀  
(9)

 

Equation (7) denotes the cross-entropy objective, which is subject to the data-consistency 

constraints in (8). The constraints in (9) ensure that all unknown probabilities or weights 

add up to one. 
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4. Two real-world applications 
 

To illustrate the GCE approach and to compare its results with its OLS counterpart, we 

consider two “real-world” applications, using test data for 2000. The first application 

employs aggregate data for the 17 regions (“autonomous communities”) and disaggregate 

data for the 50 provinces in Spain. The second application uses aggregate data for the 5 

provinces and disaggregate data for the 22 districts in the region of Flanders, Belgium. 

 We aggregate the data at the group level (i.e., for the 17 Spanish regions or the five 

Flemish provinces), deliberately “losing” (for the moment) information at the subgroup 

level (i.e., for the 50 Spanish provinces or the 22 Flemish districts), and then use the two 

proposed methods (i.e., OLS versus GCE) to make ecological inferences. Subsequently, the 

inferences being made, are compared with the “truth” – i.e., the real data at the subgroup 

level.2 

 

4.1    Case 1: Spain 

 

In the case of Spain, the dependent variable is Gross Domestic Product (GDP) per capita. 

We consider the following explanatory variables: (1) the level of the so-called Economic 

Activity Tax (TAX); (2) the number of high-speed telephone lines for the Internet (voice & 

data);3 and (3) the population density (POPDENS). The tax ratio per capita in each 

region/sub-region represents the total taxes paid by companies, self-employed and artists 

for the economic activity developed in the corresponding region/sub-region. GDP data 

provided by the Spanish Institute for Statistics (INE) in the Regional Accounts. 

 

                                                 
2 The role of spatial effects in ecological inference (e.g., ANSELIN and WHO, 2002) is not considered relevant 
for our cases. 
 
3 This kind of telephone lines have been installed – at a higher percentage – in those places with high-tech 
firms (and sometimes in residential places, not only for domestic use, but also for the self-employed). 
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4.2   Case 2: Flanders (Belgium) 

 

In the case of Flanders, Belgium, the dependent variable is per-capita taxable income 

(INC). We consider the following explanatory variables: (1) the level of educational 

attainment, measured as the percentage of the labor force having attained higher (tertiary) 

education in 1991 (EDUC); and (2) the population density (POPDENS).  

 

5. Empirical results 
 

5.1   Parameter estimates from OLS and GCE 

 

For each method (OLS and GCE), we have derived two inferences: (1) the “ecological” 

inference, and (2) the “correct” inference. 

The ecological inference consists of estimating the model at the regional (in the case of 

Spain) or the provincial (in the case of Flanders) level, and then apply the estimated 

coefficients to the provincial (in the case of Spain) or district (in the case of Flanders) 

covariates, to obtain the corresponding information at the disaggregate level. Table 1 shows 

of the model parameters for the 17 regions in Spain and the 5 provinces in Flanders. 

The “correct” inference, on the other hand, consists of estimating the model at the 

provincial level (in the case of Spain) or the district level (in the case of Flanders), using the 

real, disaggregated, data. The OLS estimates of the parameters of the “correct” model are 

presented in Table 2. 

Finally, Table 3 shows the results from the GCE ecological inference model; that is, the 

mean value of the 50 estimated varying parameters for Spain and the 22 estimated varying 

parameters for Flanders, along with the standard deviation of these individual parameter 

estimates.4 The mean values are close to the OLS results. Also, there seems to be little 

variation in the sub-regional parameter estimates, except for 3γ , corresponding to the 

POPDENS variable. 

 

                                                 
4 The GCE method is implemented by using the GAMS software package (CONOPT3 solver). 
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5.2   Testing the performance of the models 

 

In order to test the performance of OLS and GCE in correctly “predicting” (tracking) the 

sub-regional, disaggregated, data we compare the ecologically inferred estimates with the 

actual data for the corresponding sub-regions (not used in the estimation process). 

We use two measures of accuracy: the Pseudo-R2, and the Mean Absolute Percentage 

Error (MAPE).  The Pseudo-R2 is defined as the square of the simple correlation between 

 and . The MAPE is a relative error measure that is defined as: ijy ijŷ

 

100ˆ
1

1 1
×−

Σ
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= =
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i

M

j
ijijij

ii

i

yyy
M

MAPE  (10)

 

In addition, we test for possible bias in the predictions, by looking at the (significance of 

the) mean prediction errors. 

The test results are presented in Table 4.  In other words, Table 4 shows for each data set 

which method comes closest to the truth. To provide a visual picture, the actual and fitted 

values are depicted in the Figures 1 and 2, for OLS en GCE, respectively. In terms of both 

the Pseudo-R2 and the MAPE, the GCE model is outperforming the OLS model. A striking 

result is that GCE is also superior to the “correct” OLS model! The GCE model slightly 

underestimates the actual data, but the bias is not significant (at the 5% level). 

 

6. Conclusions 
 

We have tested two different approaches to ecological inference, where GDP/taxable 

income per capita for the 50 provinces in Spain and 22 districts, respectively, are predicted 

from aggregate data on the GDP per capita for the 17 Spanish regions (“autonomous 

communities”) and the taxable income per capita for the five provinces in the region of 

Flanders, Belgium. 

The two models are estimated by using OLS and GCE. Obviously, the results from the 

GCE-based model are “superior” (albeit, admittedly, only slightly) to those from the 
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traditional OLS-based models, in terms of prediction accuracy. It is to be expected that the 

inclusion of additional explanatory variables, both at the group and subgroup level, would 

produce even more satisfying results. 
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Table 1: Parameter estimates from OLS – aggregate (group) level 
 

Spain – Regions Flanders (Belgium) – Provinces 
Variables Parameters estimates 

(Standard errors) 
Variables Parameters estimates 

(Standard errors) 
Constant 2.460 

(0.940) 
Constant 3.418 

(0.894) 
TAX 2.315 

(0.344) 
EDUC 0.273 

(0.040) 
RSDI 0.125 

(0.070) 
POPDENS 0.004 

(0.001) 
POPDENS 0.004 

(0.002) 
  

Nobs 17 Nobs 5 
SER 0.795 SER 0.196 
R2 0.93 R2 0.98 
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Table 2: Parameter estimates from OLS – disaggregate (sub-group) level (“correct” model) 
 

Spain – Provinces Flanders (Belgium) – Districts 
Variables Parameters estimates 

(Standard errors) 
Variables Parameters estimates 

(Standard errors) 
Constant 2.962 

(0.703) 
Constant 6.173 

(0.806) 
TAX 2.316 

(0.281) 
EDUC 0.194 

(0.040) 
RSDI 0.136 

(0.062) 
POPDENS 0.002 

(0.001) 
POPDENS -0.0001 

(0.0015) 
  

Nobs 50 Nobs 22 
SER 1.132 SER 0.552 
R2 0.83 R2 0.74 
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Table 3: Parameter estimates from GCE – disaggregate (sub-group) level 
 

Spain – Provinces Flanders (Belgium) – Districts 
Variables Average estimates 

(Standard deviations) 
Variables Average estimates 

(Standard deviations) 
Constant 2.461 

(0.000) 
Constant 3.418 

(0.000) 
TAX 2.315 

(0.001) 
EDUC 0.273 

(0.000) 
RSDI 0.126 

(0.003) 
POPDENS 0.004 

(0.0005) 
POPDENS 0.006 

(0.011) 
  

Nobs 17 Nobs 5 
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Table 4: A comparison of the two methods (OLS versus GCE) for making ecological 
inference, in a situation where the truth is known 
 
 Spain – Provinces Flanders (Belgium) – Districts 
 OLS GCE “Correct” OLS OLS GCE “Correct” OLS
Pseudo-R2 0.80 0.86 0.83 0.73 0.82 0.74 
Mean error 0.169 0.234 0.000 0.052 0.225 0.000 
MAPE 7.5% 5.9% 6.9% 5.9% 4.5% 5.9% 
Stdev of mean error 0.175 0.146 0.155 0.171 0.128 0.112 
t-value 0.965 1.608 0.000 0.305 1.759 0.000 
Critical t-value (5%) 2.009 2.009 2.009 2.074 2.074 2.074 
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Figure 1 
Observed and ecologically inferred values from OLS and GCE – Spain 
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Figure 2 
Observed and ecologically inferred values from OLS and GCE – Flanders 
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