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Abstract

This paper studies optimal investment decision under uncertainty
regarding agricultural income subsidies. The approach is based on
stochastic programming. Investment decision is modelled as a Markov
decision process. The cost of imperfect information can be estimated
as the difference between the profitability of investment under stable
income subsidies and under uncertain subsidies. risk. Assuming ran-
dom income is stationary or non-increasing over time, there is little
scope for an option value of postponing investment. A source of an
option value assuming non-increasing non-stationary random income
comes from the explicit modelling of a cost associated with risk (vari-
ance). Examples suggest that the optimal timing of the investment is
sensitive to the modelling of risk.

1 Introduction

Common Agricultural Policy (CAP) after EU enlargement implies many un-
certainties regarding future agricultural income in Northern Europe. This
paper addresses the impact of uncertainty regarding income subsidies and
the temporary nature of the investment programs on investment behavior in
Finnish agriculture. The efficiency of the investment subsidy system can be
studied applying investment options [2]. Investment options typically involve
three parameters: the initial and accumulated costs, the flexibility in timing
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the investment and the uncertainty regarding the future rewards. [2] studies
the optimal investment decision as function of these parameters, applying a
Markov decision process (MDP) that is defined in continuous time (Ito pro-
cess) and with a continuous state space. However, a continuous time MDP
can not be solved efficiently by standard dynamic programming methods.
This paper applies a discrete time Markov model to study optimal invest-
ment under uncertain income subsidies and temporary investment programs.

Section 2 summarizes the underlying deterministic model of the optimal
timing of the investment decision based on [2]. Section 3 presents two Markov
models of optimal investment under uncertainty regarding future income sub-
sidies, applying a stochastic programming approach. Both models are based
on a Markov model, allowing for policy/time-dependent transition probabil-
ities (e.g. due to temporary investment subsidies). In the first model, the
state of the system is defined in terms of the value of investment. Two cases
are considered: at the time when investment is made, the state of the system
is assumed to be either fully known or known in terms of a probability distri-
bution. The cost of imperfect information can be estimated as the difference
between the profitability of investment under certain state (corresponding to
stable income subsidies) and under uncertain state (assuming uncertain sub-
sidies). In the second model, the value of investment at the time investment
is made is unobservable 1.

Recently, [12] has applied a discrete time MDP model to study optimal
farmland investment assuming a standard price subsidy or a decoupled direct
payment. [12] is based on assuming a risk-neutral decision maker maximizes
the firm’s expected net worth. In [12] the investment results are not very sen-
sitive to the variability in the income. This is due to the assumed stationarity
of the revenues. However, as emphasized in [2], in general both the growth
in the value of investment and uncertainty (as modelled by the variability in
income) affect the optimal timing of the investment. To capture the effect of
the variability in income on investment in a discrete time model, the MDP
model is extended in section 4 to explicitly account for risk, following [9].

When a firm makes an irreversible investment, it gives up the possibility
of waiting for new information to arrive that might affect the desirability or
timing of the expenditure [2]. The option to postpone the investment gives
an option value to the investment: the difference between the net value of

1In addition to uncertain subsidies, there are of course other reasons to a stochastic

return on investment, including uncertain costs and demand.



the investment with optimal timing and the net value obtained when the
investment is made immediately. This value is the larger the more informa-
tion becomes available by waiting. In this paper future income is assumed
to be non-stationary: the distribution of the random income subsidies is
assumed to be time-varying, with a non-increasing expected value. This im-
plies, whether the state is fully observable or not, that for a risk-neutral
decision maker there is little scope for an option value of postponing invest-
ment. Numerical results are discussed in section 5. The only source of an
option value assuming non-increasing subsidies comes from the explicit mod-
elling of a cost associated with risk (variance). The main results from the
simulations are as follows:

• The cost of uncertainty can be high. Lack of complete information
about subsidies causes inefficiencies, cf. [8]. This implies is a trade-
off between the stability and continuity of a subsidy program and the
expected subsidy level;

• Examples of MDPs with risk suggest that the optimal investment de-
cision can be sensitive to risk.

2 Optimal Stopping Model: Deterministic Case

The concept of an investment option is introduced in what follows, first
assuming a deterministic model. Consider the investment decision of a rep-
resentative firm. For simplicity, assume time t is discretized t = 1, ..., T .
Investment cost or return when postponed by one time unit is discounted
by the factor b ∈ (0, 1] where a lower b indicates a higher preference for
immediate return.

Let rt denote the rate of return per unit investment at time t. At time
t = 0 the future rate of return, rt, t > 0 is a random variable. For simplicity,
consider the timing of the investment as the decision variable. The invest-
ment decision at any time period is binary: to invest or postpone investment;
denoting by I the total available budget for the investment, the decision It

at t satisfies
It ∈ {0, I} ∀t. (1)



The aggregate budget constraint requires:

∑

t

It ≤ I. (2)

I.e., to begin with it is assumed that the total available amount for investment
can be spent at any time t; later this simplification is removed by introducing
period-specific budget constraints. Letting E denote the expectation opera-
tor, the dynamic optimization problem can be written in discrete-time as:

max E[
T∑

k=0

T∑

t=k

btIkrt − bkIk] (3)

subject to (1)-(2).

Optimal Timing of Investment

Suppose first that the yield is deterministic over time E(rt) = rt at t =
1, 2, ..., T . Continuous time interest rate v corresponding to discount factor
b implies a discrete time interest rate ρ defined by

1

(ρ + 1)t
= bt = e−vt,

i.e. v = − log(b). Following [2], in a continuous time model, define the value
of the investment opportunity when investing at time T ∗ as

F (V ) = (V eαT ∗

− I)e−vT ∗

(4)

where α ≥ 0 denotes a growth parameter. If α = 0, it is optimal to invest
immediately, provided V ≥ I. Assuming 0 < α < v, the optimal time for
the investment T ∗ in a continuous time model satisfies [2]:

T ∗ = max{
1

α
log(

vI

(v − α)V
), 0}. (5)

Option Value

The option value of the investment opportunity is defined in [2] as the dif-
ference

ω = F (V (T ∗)) − (V − I). (6)



where F (V ) is defined in (4) and V is equal to the value of investment made
at T = 0. Let

V ∗ =
v

v − α
I. (7)

If V > V ∗ where V ∗ is defined above, ω = 0. Assuming V ≤ V ∗,

ω = I(
α

v − α
[
1 + r

1 − b

(v − α)

v
]v/α − (

1 + r

1 − b
− 1)) for V ≤ V ∗.

The discrete time model with value given by (3) is different from the above
continuous time model: in particular, the discrete time model is based on
assuming that if investment is made at time T ∗, the value obtained depends
on the income at t = T ∗, .., T :

T∑

t=T ∗

btrtIT ∗ . (8)

By (8) the value in (4) corresponds to the value (3) in the discrete time model
only if

bT ∗

V eαT ∗

= I
T∑

t=T ∗

btrt. (9)

Let yt = rtI
1−b

. Assuming rt is constant for t = T ∗, .., T , the discrete time
value in (8) is

bT ∗

yT ∗ ≡ bT ∗ rT ∗I

1 − b
. (10)

The discrete time value in (10) corresponds to the continuous time value in
left-hand-side of (9) when letting

rtI

1 − b
= V eαt. (11)

If V = I denotes the value of investment at t = 0, (11) requires:

rt/(1 − b) = eαt.

Thus, a positive growth rate α > 0 is equivalent to the requirement that {rt}
is an increasing sequence in time. There is, however, little reason to expect
{rt} to be increasing in time (see following example). To find an option value
in agricultural investments, it becomes necessary to explicitly consider risk.



Table 1: Return on investment (ROI %) in milk production (2007 -10 percent

means 2007 ROI (including subsidy) when producer price decreases by 10 %

from 2003 and investment subsidy increases by 20 % or 50 % depending on

production unit

ROI % ROI %

herd size 60 herd size 130

2003 24 30

2007 -10 % 10 16

2007 -12 % 7 14

2007 -15 % 4 11

2007 -17 % 2 8

2007 -20 % 0 5

Example

Table 1 summarizes the expected profitability of investment in milk produc-
tion, based on [11]. Assuming the investment subsidy grows by 20 percent
and assuming the income subsidy decreases by 15 percent from 2003 level by
2007, the profitability of a livestock-place is 11 percent 2007 (assuming herd
size 130). Setting T ∗ = 0 in (5), it is optimal to invest immediately whenever
V ≥ V ∗ where V ∗ is given in (7). For the continuous time problem to make
sense it is necessary to assume that α < v; otherwise, waiting longer would
always be a better policy [2]. Postponing investment is not optimal when
α = 0.

For details regarding Table 1, see [11]. Section 5 returns to the example in
Table 1.



3 Optimal Investment under Uncertainty

In general, the optimal timing of investment depends on both the growth
rate α and the variability of the return rt over time. Assume in what follows
that the random variation in rt is due to randomly varying income subsidies.
Suppose for simplicity the uncertainty regarding the future income subsidies
can be modelled as a Markov model. The Markov decision process (Ito
process) in [2] is in continuous time and has a continuous state space. To
simplify numerical analysis, this paper focuses on discrete time models.

3.1 Markov Model

Assume the possible Markov states are defined in terms of the future rate of
return. For example, in Table 1 the states of future rate of return depend on
the herd size and future income subsidy. Consider a discrete time model for
a given herd size. The transition probabilities between the different possible
states are given in Table 2. Due to fixed term investment subsidy programs,
the matrix of transition probabilities depends on the timing of the investment.
Denote the matrix of transition probabilities at time t by At. Let rit denote
the rate of return at time t when the subsidy is determined by state i. The
expected return E(rt) at time t is defined as:

E(rt) =
∑

i

Pitrit (12)

where Pit is the probability that the rate of return is determined by state i
at time t and rit is the rate of return at time t is state i. The probabilities
Pt = {Pit} associated with the different states rit at time t are determined
from:

P′
t = P′

0A
t
t, (13)

where P0 denotes the vector of initial probabilities of the different subsidy
states.

Transition Probabilities

The transition probabilities in Table 2 are defined independent of the in-
vestment policy. In general, the transition probabilities at time t can be
defined as function of the investment policy at time t, e.g. accounting for a



Table 2: Transition Probabilities between Different Scenarios Regarding Pro-

ducer Price Change

0% -10 % -12 % -15 % -17 % -20 %

0 % p11 p12 p13 p14 p15 p16

-10 % p21 p22 p23 p24 p25 p26

-12 % p31 p32 p33 p34 p35 p36

-15 % p41 p42 p43 p44 p45 p46

-17 % p51 p52 p53 p54 p55 p56

-20 % p61 p62 p63 p64 p65 p66

temporary investment program. Formally, letting S(t) denote the state at
time t and It denote the investment decision at time t, the state transition
probability is given as a function

p(S(t)|S(t− 1), It). (14)

A Markov Decision Process (MDP) is a Markov chain with the above mod-
ification, i.e. the transition probability matrix depends on the action taken
in each stage. For example, investment may increase productivity [6]: this
can be modelled by a MDP with a slightly more advantageous transition ma-
trix (relatively increasing the probabilities of moving to a higher return state)
whenever investment takes place. Two models are considered in what follows.
In the first model in section 3.2, the state of the system (in terms of return on
investment) is assumed to be known when making an investment decision.
In the second model in 3.3, the state of the system is unobservable. It is
not necessary to assume a constant transition matrix (continuing investment
subsidy program); Section 5 discusses examples with policy/time-dependent
transition-probabilities.



3.2 Model 1: Discrete Time Dynamic Program

Consider the following sequential decision problem in discrete time. At time
t = 1, .., T the firm makes a decision on the level of investment

It ∈ S = {0, 1, 2, .., I}, t = 1, .., T, (15)

where I denotes the maximum available budget for investment per time pe-
riod. The budget constraint for cumulative investment thus requires:

∑

t

It ≤ TI. (16)

An observed return rate rt at time t is generated by a transition matrix,
in general depending on the investment policy. It is assumed for simplicity
that when making investment decision at time t, rt remains the same for
the future periods t + 1, .., T . The dynamic optimization problem subject to
(15)-(16) thus can be stated as

v(r0) = max
T∑

t=0

btE(yt − It) (17)

where v(r0) denotes the value function given initial state r0 and where yt is
given by (cf. equation (10))

yt =
rtIt

1 − b
.

Problem (17) subject to (15)-(16) can be solved recursively applying Bellman
equation:

v(rt) = max
It∈S

{(yt − It) + bEv(rt+1)}.

The expected value of perfect information measures the maximum amount
a decision maker would be willing to pay for complete information about the
future [1].

Definition 1 Let f(x) denote the objective function to be maximized with

respect to decision variable x. Let z denote a random variable. The expected

value of perfect information (EVPI) can be measured as the difference [1]

E[max f(x, z)] − max E(f(x, z)). (18)



The first term in equation (18) corresponds to a ”wait-and-see” solution and
the second term to an expected value maximizing solution. A numerical ex-
ample of EVPI will be given in 5.3. EVPI can be applied to measure the cost
of imperfect information under randomly varying subsidies, in comparison
to stable (non-random) subsidies. Applying (18) to value function v implies
period-t EVPI(t) in terms of value function:

EV PI(t) = E(v(rt)) − v(E(rt)).

3.3 Model 2: Unobservable Value

Due to the many uncertainties regarding future agricultural subsidies, it
seems realistic to assume that information becomes available only gradually.
This motivated the modelling of the value of investment as non-observable.
Consider now a model with an aggregate budget constraint given by:

∑

t

It ≤ I.

The expected value of investment IN ∈ S at stage N can be defined as

E(V (N)) =
T∑

t=N+1

e−vtINE(rt) − e−vNIN , (19)

where E(rt) =
∑

i ritPit is computed using probabilities {Pit} given in (13).
Here the value of investment made at time t = N in (19) is given in terms of
an expected value: assuming rt is observed at the end of period t, all terms
rt affecting the value of investment made at time t = N are random at the
beginning of period t. This is different from the above model in section 3.2
where the value of investment at any time t only depends on the history of
realizations up to time t.

The two terms in (19) correspond to the expected present value of the
cost and revenue. In what follows, denote the expected revenue from making
investment IN by

E(R(N)) = E[
∞∑

t=N+1

btINrte
αt]. (20)

Define the state of the system S as the amount of budget available. De-
noting the next state after decision IN by S ′, the state transition equation



giving the resultant state at stage N is given by

S ′ = S − IN . (21)

The model can be solved by backward recursion. The first stage N = 1 thus
corresponds to the last time period T . On average, the return at time t = T
with N = 1 is given by (12) with t = T . Let FN(S) =

∑N
k=1 E(V (k)) denote

the overall return starting from state S at stage N . The Bellman equation
can be written as:

FN(S) = max
IN

{E(R(N)) + E[FN−1(S
′(N, S, IN))]}. (22)

4 Risk in Markov Decision Processes

The above MDP models are based on expected net income maximization
and assume risk neutrality. For example, consider Model 2 above. Since the
value of the investment only depends on random future values, the expected
value of perfect information applying Definition 1 will be zero. If the income
process is non-increasing in time, there is no option value of postponing
investment. As emphasized in [2], in general both a positive growth rate
α > 0 and uncertainty (as modelled by the variability in income) can create
a value for postponing investment. To take risk explicitly into account in the
Markov model, consider the following modification of a MDP based on [9].

The idea that risk affects decision-making is not new in agricultural eco-
nomics; stochastic programming has been applied to decision-making in agri-
culture under uncertainty [4]. A traditional approach can be summarized as
follows (ibid.). Consider a utility function in exponential form:

U(x) = 1 − e−βx, (23)

where β is a risk-aversion parameter. The expected value of utility (23) is

E(U(x)) = E(x) −
β

2
V ar(x), (24)

corresponding to a static objective function (ibid.). A corresponding dynamic
objective function accounting for risk is defined next following [9].



A Stochastic Programming Model

Consider the quadratic utility function:

U(x) = x −
β

2
x2. (25)

Definition 2 The resource certainty equivalent (RCE) of a scalar random

variable Z is defined as

SU(Z) = sup
z
{z + EU(Z − z)}.

where U is a concave function.

Applying Definition 2 to utility function (25) gives the RCE associated with
this utility:

Sβ(X) = E(X) −
β

2
V ar(X) (26)

where β is a risk parameter. An agent maximizing the criterion in (26) is
risk averse if β > 0.

Definition 3 The recourse certainty equivalent (RCE) of the random se-

quence X = (X1, .., XT ) is defined as [9]

Sβ1,..,βT
(X) =

T∑

t=1

bt−1Sβt
(Xt) =

T∑

t=1

bt−1{E(Xt) −
βt

2
V ar(Xt)} (27)

where the βt parameters allow to model different risk attitudes in different

stages. The ”utility” obtained at time t, Sβt is defined as the difference:

E(Xt) −
βt

2
V ar(Xt). (28)

The definition of the period-t RCE in equation (28) corresponds to RCE
in equation (26). An alternative motivation for the definition of period t
objective in equation (28) is given in equation (24). Section 5 exemplifies the
impact of risk on the optimal timing of investment.



5 Examples

Section 5.1 discusses examples of the optimal timing of the investment de-
cision, based on expected value maximization. Section 5.2 extends these
examples to accounting for risk. Sections 5.1-5.2 are based on the model
introduced in 3.3. A comparison of the results in 5.1 and 5.2 reveals that
risk may affect the optimal timing of the investment. In sections 5.1-5.2 the
transition probabilities are independent of investment policies. In general, in-
vestments and investment subsidies have an impact on the income stream [6].
Section 5.3, based on section 3.2, discusses an example of a Markov decision
process where the transition probabilities depend on the investment policy.
Period-specific financial constraints explain the postponement of a part of
the investments. Section 5.4 discusses an example of a partially observable
MDP.

5.1 Expected Value Optimization

Consider a firm deciding its level of investment for t = 1, .., 45. For sim-
plicity, the size of investment at all times is chosen from the discretized set
{0, 1A, 2A, ..., 44A} where the parameter A > 0 defines the value of the in-
vestment. Assume for simplicity there is no period-specific constraints on
investment. Consider a discrete time model where the expected return at
time t is defined as above as

E(rt) =
∑

i

ritPit. (29)

In the absence of period-specific budget constraints It ∈ {0, I}, ∀t and for a
risk neutral decision maker with linear utility U the objective can be stated
as:

max U(
T∑

N=1

E(V (N))) = max
T∑

N=1

E(V (N)) = max
N∈{1,..,T}

{E(V (N))}. (30)

Thus, rt observed at time t can be generated using the average return (29).
Assume first that the variation in the rate of return only depends on the

future income subsidy, i.e. the other variations in income are assumed to
be negligible. Simulations of the above Markov model were done assuming
the transition probabilities between different states of return on investment



Table 3: Transition Probabilities before End of 3-Year Period

0.3 0.2 0.16 0.11 0.08

0.3 0.01 0.3 0.4 0.28 0.01

0.2 0.01 0.8 0.1 0.09 0

0.16 0.01 0.05 0.7 0.15 0.09

0.22 0.01 0.01 0.08 0.8 0.1

0.08 0 0 0.05 0.15 0.8

(cf. Table 1) depend on the timing on the investment; the transition matrix
before the end of a time period of three years is given in Table 3. The
transition matrix after 3 years is given in Table 4. The underlying reasons
for the change in transition probabilities include a potential change in income
subsidies and a potential change in investment subsidies (affecting random
income). Figure 1 illustrates the outcome in the case with v = 0.09 and
A = 5000. Postponing investment gives the highest NPV for all levels of
investment. The optimal solution is then to invest the maximum available
amount at t = 1.

Note that the transition matrix before and after the policy change is de-
fined assuming transitions take place within a given period of time (originally
three years in Table 1). This affects the interpretation of v.

Time-Varying Income

Random income subsidies (adjusted by investment subsidies) was assumed to
be the only source of variation in income in the above examples. In general,
the income stream varies due to e.g. changes in production costs and demand.

Assuming a constant growth rate α in income, for a given return rate r,
let (1 + r)t = eαt denote income at t due to growth in value and consider an
additive model:

E(rt) =
∑

i

Pitrit + eαt.

The following summarizes the key results from simulating the model with



Table 4: Transition Probabilities after 3-Year Period

0.3 0.2 0.16 0.11 0.08

0.3 0.0 0.2 0.4 0.3 0.1

0.2 0.0 0.7 0.15 0.15 0

0.16 0.0 0.1 0.6 0.2 0.1

0.11 0.0 0.01 0.19 0.7 0.1

0.08 0 0 0.0 0.05 0.95

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5
x 10

4

time N investment is made

E
V

(N
)

Figure 1: Expected net income at different levels of investment with v = 0.09

and A = 5000



different values for v and a constant α:

• If α > v then is pays off to postpone investment

• If α ≤ v then it is optimal to invest at t = 1.

If α exceeds v, the E(V (N))-curves in Figure 1 become upward-sloping: it
becomes optimal to postpone investment. It might be unrealistic to assume
α > v; nevertheless, there can be an incentive to postpone investment when
taking risk into account.

5.2 Examples with Risk

Consider the optimal timing of investment assuming a binary investment
decision: according to equation (30), the optimal time is determined as the
time point when the expected net income or utility is highest. Figure 2
depicts a modification of the example in Figure 1. In particular, the utility
in Figure 2 is defined according to Definition 3 in section 4, with β/2 = (10)−4

(to ensure the utility is non-negative). The following can be observed from
Figure 2, with a 45-years time horizon:

• Time-varying risk can affect the optimal timing of the investment; there
can be a motivation for postponing the investment due to the time-
varying variance.

• Time-varying risk only affects the optimal timing of relatively valuable
investments. For investments greater than 110000 in value, the risk is
high enough to make the net utility negative. For relatively low levels
of investment, risk does not affect the optimal timing at t = 1.

5.3 Markov Decision Process

Recall the definition of a MDP in section 3: the transition matrix depends on
the investment policy. (For example, [12] defines the transition probabilities
for land price and debt as function of the investment policy.) To exemplify
the optimal timing of investment with a MDP, consider the following exam-
ple. Consider the model in 3.2, first without period-specific constraints as
formalized in (15). This can be modelled via an MDP as follows. Assume
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Figure 2: Expected net utility at different levels of investment with A=5000,

β/2 = 0.0001, v = 0.09

that the transition matrix whenever investment has not been made is given
in Table 5, appended by an additional state ra corresponding to a state where
the budget has been used up. After investment has been made a new transi-
tion probability matrix applies: one where each state leads to state ra with
probability one.

The immediate return when investing It at time t is given by

gt =
(rt + et)It

1 − b
− It,

where et is a small random normal perturbation. In the absence of period-
specific financial constraints an aggregate budget constraint Ia applies, i.e.:

∑

t

It ≤ Ia. (31)

With an aggregate budget constraint, the firm invests at most once. The
probability of investment thus corresponds to the probability of investing Ia.
In the following example let Ia = 10000.



Table 5: Transition Probabilities before End of 3-Year Period

0.3 0.16 0.11 0.05 0

0.3 0.01 0.3 0.4 0.28 0.01

0.16 0.01 0.8 0.1 0.09 0

0.11 0.01 0.05 0.7 0.15 0.09

0.05 0.01 0.01 0.08 0.8 0.1

0 0 0 0.05 0.15 0.8

In this example, the only motivation for postponing investment is a start-
ing state r0 leaving scope for a slight improvement in rt in future. This is
true for both expected value maximization and expected utility maximization
with period-specific utility given in equation (25). Figure 3 depicts the proba-
bility of investment with v = 0.09 and β = 3(10)−5, showing only a marginal
difference between a linear utility model and a nonlinear utility model for
t = 1, .., 30 (after t = 30, the probability of investment is slightly higher with
the linear utility). The similarity between the linear and nonlinear utility
models was observed for different values of r0 and b.

Let Prt(I) denote the probability of investment at time t when the state
gt is observed. The expected value of perfect information (EVPI) can here
be defined for each time period t as the weighted difference (cf. Definition
1):

EV PI(t) = E(max btgt)/Prt(I) − max{max
t

btE(gt), 0},

where the investment probability Prt(I) is used as weight for E(max btgt)
(for the second term the corresponding probability is by definition equal to
one). Figure 4 depicts the ratio between EVPI(t) and value of investment Ia.
Assuming v = 0.09, E(gt) remains nonpositive for all t. The probability of
investment at time t when maximizing the expected value of income stream
is zero. The ratio depicted in figure 4 thus corresponds to the ratio

E(max btgt)

Prt(I)Ia
. (32)

The ratio (32) varies between 1.1 and 1.5 for t = 1, .., 45 (after t = 45 the
probability of investment is less than 1 percent, explaining the peak after
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Figure 3: Probability of investment with aggregate budget constraint Ia =

10000, v = 0.09, r0 = 0.05: linear and nonlinear utility model

t = 45 ). The value of perfect information EVPI(t) is high in this example:
between 110 and 150 percent of total expenditure on investment. The same
is true for b = 0.95 when t = 1, ..., 7; for t = 8, .., 50 the ratio EV PI(t)/Ia

gradually falls to 0. The mean value of the ratio over time in this latter case
is 0.47.

Financial Constraints

Like in [12], assume now that the decision-maker decides at each time t on
investment with period-specific constraints:

It ∈ {0, I}, t = 1, .., T, (33)

i.e. the total budget for investment with T = 50 periods is 50I. Letting
I = 200, the total maximum budget is 10000. Assume the state of the
system rt is a Markov process, with transition probabilities depending on the
investment decision. Whether or not investment is not made, the transition
probabilities are given in Table 5. The immediate return when investing It
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Figure 4: Ratio between EVPI and expected delay-discounted expenditure

on investment, v = 0.09, r0 = 0.05

at time t is given by

gt =
(rt + et)It

1 − b
− It,

where et is a small random normal perturbation. The total return to be
maximized subject to (33) is

E(
∑

t

btgt).

The dynamic optimization problem can be solved by determining the time
periods and states for which investment takes place. Set the continuous
time interest rate v equal to 0.09. The above problem is solved numerically
with backward recursion 10000 times, using Matlab [3]. The initial state
is r0 = 0.11. The mean optimal investment policy over time implies the
probability that it is optimal to invest at t = 1, .., T , depicted in Figure 5. The
outcome given in Figure 5 remains practically the same, when incorporating
a risk-attitude via nonlinear utility functions (eq. (25)). This is similar to
the above case without period-specific constraints.
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Figure 5: Probability of Investment, v = 0.09

The expected value of perfect information EVPI (Definition 1) is depicted
in Figure 6. During the first three periods, the difference in EVPI(t)=Ev(rt)−
v(E(rt)) is negligible: the optimal investment decision can be made based
on expected state. At time t = 4, EVPI(4) is more than 15 percent of the
delay-discounted value of total optimal investment

∑
t b

tIt. After this, the
cost percentage gradually decreases to zero over time.

5.4 Partially Observable Markov Process

In a discrete time version of the investment model in [2], the value rt+1 at
time t can be assumed to depend on a weighted sum of a mean value µ and
the value observed previous time period [5, 12, 2]:

rt+1 = θµ + (1 − θ)rt + et (34)

where et is a sequence of independent normally distributed random variables
with zero mean. In many applications, the state of the system at time t is not
fully observable. In this case the MDP model is called a Partially Observable
MDP (POMDP) [10]. Assume that given the observed rt, the decision maker
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forecasts the value rt+1 according to equation (34), assuming θ = 0; thus,
the process {rt} is a Markov process, perturbed by a small random variation.
Consider a binary investment decision: It ∈ {0, I} subject to an aggregate
constraint: ∑

t

It ≤ I.

If the decision-maker invests at time t, he obtains the value

W (t) =
bt(rt + et)I

1 − b
− btI.

Consider the Markov process defined by transition probabilities in Table
5, perturbed by a small random normal disturbance. The utility value of
investment is computed for each possible timing of investment t = 1, .., 50,
taking the expectation and variance of the value of investment over 10000
runs, starting from state r0 = 0.16. The solution to a risk-adjusted problem
differs only marginally from the optimal solution of a risk-neutral decision
maker. This is different from the results in section 5.1 where the variance
is defined over sequences in time instead of over sequences at a given time.
Figure 7 shows that for a risk-neutral decision-maker, it is optimal to invest
at t = 1.
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6 Conclusion

This paper has introduced a stochastic programming approach to optimal in-
vestment under uncertainty. Based on this approach, the cost of uncertainty
regarding agricultural subsidies can be quantified. Numerical examples sug-
gest that the cost of uncertainty can be significant. This implies that the
efficiency of investment subsidy programs is deteriorated by the uncertainty
regarding future income subsidies.

A positive option value is based on assuming an increasing expected value
of the investment over time, assuming the decision-maker is risk-neutral.
Explicitly accounting for risk helps to restore a positive option value, even
if the random income is stationary or non-increasing in time. Numerical
examples show that the optimal timing of the investment can be sensitive to
the modelling of risk. A cost associated with risk (variance) is a source of an
option value of postponing investment (along with period-specific financial
constraints).

Topics for future work include the study of policy trade-offs (how much
compensation is needed to overcome uncertainty costs) and the extension of
the model to account for a random timing of a policy change.
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[6] A.-M. Heikkilä, L. Riepponen, A. Heshmati, Investment in New Technol-
ogy to Improve Productivity of Dairy Farms, 91st EAAE Seminar, Univer-
sity of Crete 24-26 September 2004 CD-ROM

[7] T. Hirvi, Aktiivitilojen viljelijöiden mielipiteitä investointitutesta ja
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