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Abstract. Club-convergence analysis provides a more realistic and detailed picture 
about regional income growth than traditional convergence analysis. This paper presents 
a spatial econometric framework for club-convergence testing that relates the concept of 
club-convergence to the notion of spatial heterogeneity. The study provides evidence for 
the club-convergence hypothesis in cross-regional growth dynamics from a pan-
European perspective. The conclusions are threefold. First, we reject the standard Barro-
style regression model which underlies most empirical work on regional income 
convergence, in favour of a two regime [club] alternative in which different regional 
economies obey different linear regressions when grouped by means of Getis and Ord's 
(1992) local clustering technique. Second, the results point to a heterogeneous pattern in 
the pan-European convergence process. Heterogeneity appears in both the convergence 
rate and the steady-state level. But, third, the study also reveals that spatial error 
dependence introduces an important bias in our perception of the club-convergence and 
shows that neglection of this bias would give rise to misleading conclusions. 
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1 Introduction 

 
At the beginning of the twenty-first century, the convergence debate has become one of 
the foremost topics in economic research. While much of the research has initially 
centred on cross-country patterns and trends, the issue of regional income convergence 
has received increasing attention in recent years1. This interest has been enhanced by 
both the deepening and widening of the integration process in Europe, in particular by 
the expectations of catch-up of the new EU-member states in the eastern periphery of 
Europe. The expectations largely rest – explicitly or implicitly – on the acceptance of 
the unconditional convergence hypothesis which suggests that per capita incomes of 
regional economies converge to one another in the long-run independently of initial 
conditions. 
 
The traditional neoclassical model of growth (see Solow 1956) provides a simple 
rationale for this hypothesis. Because production functions display constant returns to 
scale, and because there are diminishing returns to capital, economies with a relatively 
small capital stock have higher marginal productivity and will catch up with more 
developed regions. This led to the notion of convergence which can be understood in 
two different ways. The first is in terms of level of income. If regions are similar in 
terms of preferences and technology, then their steady-state income levels will be the 
same, and over time they will tend to reach that level of per capita income. The second 
way is convergence in terms of the growth rate. Since in the Solow model the steady-
state growth rate is determined by the exogenous rate of technological process, then – 
provided that technology has the characteristics of a public good – all regions will 
eventually attain the same steady-state growth rate (Islam 1995). 
 
The failure of conventional neoclassical growth theory to explain sustained growth has 
been addressed in recent years by the advent of new variants of the standard 
neoclassical model which seek to endogenise the accumulation of factors. These 
endogenous growth models incorporate various processes – such as localised collective 
learning and the accumulation of knowledge – which prevent social returns to 
investment (broadly defined) from diminishing. This opens up the possibility that 
economic integration can contribute to a higher long-run growth rate, by stimulating the 

                                                 
1  For a review of the empirical literature on regional income convergence see Magrini (2004). The vast majority of 

regional or international growth studies fail to consider and model spatial dependence and heterogeneity in the 
convergence process. 
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accumulation of those forms of capital to which returns are not diminishing (Martin 
2001). It also allows the possibility for national and regional economies to converge to 
different long-run equilibria, depending on initial conditions. If regional economies 
differ in their basic growth parameters such as saving rates, human capital development 
and technological innovativeness, or if interregional spillovers of knowledge are weak, 
they may not converge to a common steady-state position as postulated in the 
unconditional convergence hypothesis, but there might be convergence among similar 
groups (clubs) of regional economies (club-convergence)2, but little or no convergence 
between such groups (Martin 2001). 
 
The focus in this paper is on the club-convergence hypothesis which suggests that per 
capita incomes of regional economies that are identical in their structural characteristics 
converge to one another in the long-run provided that their initial conditions are similar 
as well. Empirical evidence for this hypothesis is – quite in contrast to the vast literature 
on the unconditional convergence hypothesis – rather scarce. One notable exception is 
the study by Durlauf and Johnson (1995) that finds evidence for multiple regimes in 
cross-country growth dynamics in a world-wide context. 
 
Our study aims at two central objectives. The first is to extend the Barro-style 
methodology for convergence analysis to a spatial econometric framework for club-
convergence testing. The second is to apply this framework in a cross-regional growth 
context in Europe. We consider the behaviour of output differences, measured in terms 
of per capita gross regional product [GRP] across 256 NUTS-2 regions in 25 European 
countries3. The data cover the period 1995 to 2000, when economic recovery in Central 
and East Europe [CEE] gathered pace. The sample period is admittedly short by any 
standard4, but Barro-style growth regressions are valid for shorter time periods as well, 

                                                 
2 Multiplicity of steady-state equilibria is consistent with the neoclassical paradigm (Azariadis and Drazen 1990). 

If heterogeneity is permitted across regions, the dynamical system of the Solow growth model could be 
characterised by multiple steady-state equilibria, and club-convergence becomes a viable testable hypothesis 
despite diminishing marginal productivity of capital (Galor 1996). 

3  The countries chosen are the EU-25 countries (except Cyprus and Malta) and the two accession countries 
Bulgaria and Romania. 

4  There is a lack of reliable gross regional product figures in CEE countries. This comes partly from the change in 
accounting conventions now used in the CEE economies. More important, even if reliable estimates of the change 
in the volume of output produced did exist, these would be hardly possible to interpret meaningfully because of 
the fundamental change of production, from a centrally planned to a market system. As a consequence, figures for 
GRP are difficult to compare between EU-15 and CEE regions until the mid 1990s (European Commission 
1999). 
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as pointed out by Islam (1995), Durlauf and Quah (1999)5. Nevertheless, the results of 
this short-run analysis should be interpreted with care. 
 
The paper is divided into two parts. The first, Section 2, outlines the empirical 
framework. Subsection 2.1 starts with the standard Barro-style methodology for 
unconditional convergence testing. Subsection 2.2 extends this methodology to club-
convergence testing. The extension relates the concept of club-convergence to the 
notion of spatial heterogeneity and suggests an approach that distinguishes three major 
steps in the analysis. The first involves the identification of spatial regimes in the data in 
the sense that groups [clubs] of regions identified by initial income obey distinct growth 
regressions. The second relates to checking whether convergence holds within the clubs 
or not. Use is made, here, of specification techniques which take a single regime model 
as the null hypothesis. Spatial dependence may invalidate the inferential basis of the test 
methodology and a third step may be necessary, namely testing for spatial dependence 
and – if necessary – appropriate respecification of the test equation. Subsection 2.3 
shows that club-convergence hypothesis testing is becoming considerable more 
complex then. 
 
The second part of the paper, Section 3, provides empirical evidence for a pan-European 
view of club-convergence. Subsection 3.1 describes the data we analyse and the 
empirical procedure we use to identify spatial regimes in the data. Subsection 3.2 then 
presents the results of club-convergence hypothesis testing. Our conclusions are 
threefold. First, we reject the linear growth regression model commonly used to study 
cross-regional growth behaviour in favour of a two regime [club] alternative in which 
different regional economies obey different linear regressions when grouped by means 
of Getis and Ord's (1992) local clustering technique. Second, the results point to a 
heterogenous pattern in the pan-European convergence process. Heterogeneity appears 
in both the convergence rate and the steady-state level. But, third, the study reveals that 
spatial error dependence introduces an important bias in our perception of the club-
convergence. Neglection of this bias would give rise to misleading conclusions. 
 
 
 
 

                                                 
5  Islam (1995), and Durlauf and Quah (1999) argue, that such regressions are also valid for shorter time spans since 

they are based on an approximation around the steady-state and supposed to capture the dynamics towards the 
steady-state. 
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2 The Framework for Convergence Testing 
 
2.1 The Conventional Approach to Convergence Analysis 
 
The empirical growth literature has produced various convergence definitions. In this 
study we follow Bernard and Durlauf (1996) to define convergence as a process by 
which each region moves from a disequilibrium position to an equilibrium or steady-
state position. Let yjt denote the log-normal per capita output6 of region j at time t and Ft 
all information available at t, then regions j and j' are said to converge between dates t 
and t+τ if the log-normal per capita output disparity at t is expected to decrease in 
value7. Formally expressed: If  yjt > yj't then 
 

' '|jt j t t jt j tE y y y yτ τ+ + − < − F , (1) 

 
where [ ].E  denotes the expectation operator. This definition considers the behaviour 
of the output difference between two regional economies j and j' over a fixed time 
interval (t, t+τ) and equates convergence with the tendency of the difference to narrow. 
Convergence between members of a set of n regions may be defined by requiring that 
any pair shows convergence. We say there is unconditional convergence if the 
conditional expectation is taken with respect to the linear space generated by current 
and lagged regional output differences rather than in a general Ft sense. 
 
Since the notion of convergence pertains to the steady-states of the regional economies, 
a test for convergence would require the assumption that the regions included in the 
sample are in their steady-states. But evaluating whether regions are in their steady-
states or not is fraught with difficulties (Islam 1995). One way around this problem is to 
analyse the correlation between initial levels of regional income and subsequent growth 
rates. This leads to the so-called Barro-style regression8 that – so widely used to test the 
hypothesis of unconditional convergence – may be written as follows: 

                                                 
6 We express the definition in terms of the logarithm of per capita output between economies, as the empirical 

literature has generally focused on logs rather than levels. 

7  This definition implies that σ-convergence is not guaranteed if yjt – yj't  does not converge to a limiting stochastic 
process. For example, if yjt – yj't equals one in even periods and minus one in odd periods, the two economies will 
fail to converge in the sense of σ-convergence, although the sample mean of the differences is equal to zero. 

8 In some formulations of cross-section tests Equation (2) is modified to include a set of control variables. Here, a 
negative β means that convergence holds conditional on some set of exogenous factors such as national dummies, 
regional industrial structure, and various terms intended to capture possible endogenous growth effects such as 
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j jt jtg yτ α β ε= + +  j=1, ..., n (2) 

 

where 1 log ( / )j jt jtg y yτ ττ +≡  is region's j annualised growth rate of per capita gross 
regional product [GRP], jty  economy's j GRP per capita at time t,  τ  the length of the 
time period,  α and β  unknown parameters9 to be estimated and jtε  a disturbance term 
with  | 0.jt tE ε  = F   There is unconditional β-convergence when β  is negative and 
statistically significant [treating 0β ≥  as the no-convergence null-hypothesis] as this 
implies that the average growth rate of per capita GRP between t and (t+τ)  is negatively 
correlated with the initial level of per capita GRP. 
 
It is convenient to work with an equivalent matrix expression for Equation (2) which is  
 

= +g Y γ ε  (3) 

 
with 
 

2(0, )nN σ∼ Iε  (4) 

 
where g  is a (n, 1)-vector of observations on the average growth rate of per capita GRP 
over the given time period ( , )t t τ+  as the dependent variable. Y  is a (n, k=2) design 
matrix containing a unit vector and one exogenous variable [the initial level of log-
normal per capita GRP], and γ =[ α, β]' the associated parameter vector where [ ], 'α β  
is the transpose of [ ],α β . For the data-generating process it is assumed that the 
elements of ε  are identically and independently distributed (i.i.d.) with zero mean and 
variance 2σ . Thus, the error variance-covariance matrix is E[ε 'ε ]= 2σ  In, where the 
scalar 2σ  is unknown and In a nth-order identity matrix. Assuming non-singularity of 
the Y  matrix, ordinary least-squares [OLS] estimation can be used to determine the 
sign and significance of the parameter β, for the case of unconditional β-convergence. 
 

                                                                                                                                            
regional educational levels and proxies for regional R&D. Galor (1996) has shown that the assessment of the 
conditional and the club-convergence hypothesis is nearly isomorphic from a neoclassical perspective.  

9  Since the pioneering paper of Baumol (1986) β  has become a popular criterion for evaluating whether or not 
convergence holds. A negative correlation is taken as evidence of convergence as it implies that – on average – 
regions with lower per capita initial incomes are growing faster than those with higher initial per capita incomes. 
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In equating convergence10 with the neoclassical model of growth (see, for example, 
Barro and Sala-i-Martin 1992, Sala-i-Martin 1996), α  can be interpreted as an 
equilibrium rate of GRP growth, while the estimate of β  makes it possible to compute 
the convergence rate, *β , which measures the speed at which the steady-state is 
approached: 
 

( )* 1 ln 1τβ τ β= − −  (5) 

 
with 
 

*
*

s.e.( )s.e. ( ) .
exp ( )

ββ
β τ

=
−

 (6) 

 
Estimating Equation (3) jointly with Equation (5) constitutes what Quah (1996) terms 
the canonical β-convergence analysis11. Given the convergence rate estimate *β , it is 
easy to calculate approximate convergence times (Fingelton 1999), such as the half-
distance to the steady-state that may be computed as ln(2)/β* with the approximate 95 
percent confidence interval defined as * *ln(2)/( 2s.e.( )).β β±  
 
 
 
2.2 Testing for Club-Convergence 
 
The formal cross-section equation outlined in Equation (3) has been used to study club-
convergence too, but not that frequently12. In their contribution to this line of research 
within a cross-country context, Durlauf and Johnson (1995) observe that convergence in 
                                                 
10  Test Equation (3) can be derived as a log-linear approximation from the transition path of the neoclassical model 

of growth for closed economies (Solow 1956), by taking a Taylor series approximation around a deterministic 
steady-state. Many studies share this neoclassical underpinning. The assumption of diminishing returns that 
drives the neoclassical convergence process and the assumption of a closed economy are particularly questionable 
for regional economies. But there are solid empirical reasons why it makes sense to fit growth regression models 
in which there is a significant convergence process even if the reasons for this convergence may be debated. 

11  Instead of estimating Equation (3) and using Equation (5) to compute the speed, β*, one can also estimate the 
non-linear least squares relation directly. 

12  Convergence clubs had been studied in Baumol (1986); Chatterji (1992); Armstrong (1995); Dewhurst and 
Mutis-Gaitan (1995); Durlauf and Johnson (1995); Chatterji and Dewhurst (1996); Fagerberg and Verspagen 
(1996); Baumont, Ertur and LeGallo (2003), and LeGallo and Dall'erba (2005). But only the latter two studies 
have considered and modelled the spatial dimension of the growth and convergence process to avoid 
misspecification. 
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the whole sample (global convergence) does not hold or proves to be weak because 
countries belonging to different regimes are brought together. The proper thing, in their 
view, is to identify country groups, where members share the same equilibrium, and 
then to check whether convergence holds within these groups (local convergence). 
 
Despite the conceptual distinction, it is not easy to distinguish club-convergence from 
conditional convergence empirically. This finds reflection in the problems associated 
with the choice of the criteria to be used to group the economies in testing for club- 
convergence. Evidently, steady-state determinants cannot be used for this purpose, since 
a difference in their levels causes equilibria to differ even under conditional 
convergence (Islam 2003). Durlauf and Johnson (1995) use initial levels of income and 
literacy levels to group the countries and find the rates of convergence within the groups 
(clubs) to be higher than that of the whole sample. The authors perform two sets of 
analysis. In the first, the countries are clustered on the basis of arbitrarily chosen cut off 
levels of initial income and literacy. Apprehending selection bias in such grouping, the 
authors present a second analysis in which the grouping is endogenised using the 
regression-tree procedure13. The results received from these two methods of grouping14, 
however, prove to be qualitatively similar. 
 
We follow Durlauf and Johnson (1995) to view club-convergence testing as consisting 
essentially of two steps. The first is to determine whether the data exhibit multiple 
regimes in the sense that groups [clubs] of regions identified by initial income obey 
distinct growth regressions, and then to check whether convergence holds or not within 
these clubs. While Durlauf and Johnson (1995) relate the concept of club-convergence 
to the notion of heterogeneity we relate it to the notion of spatial heterogeneity15. This is 
justified by the fact that the process of economic growth and convergence is inherently 
endowed with a spatial dimension. Equilibria of convergence clubs seem to be 
characterised by latent variables which are correlated among cross-sectional 

                                                 
13  See Breiman et al. (1984) for a description of the procedure and its properties. 

14  Fagerberg and Verspagen (1996) have attempted to identify groups of similarly behaving European regions using, 
in principle, the second method and taking unemployment as control variable. The regression-tree procedure 
partitions the cross-section of 70 regions from six EU member countries (W-Germany, France, Italy, UK, 
Netherlands and Belgium) into three distinct groups of regions determined by unemployment levels (high, 
intermediate, low). But the study – this holds also true for Durlauf and Johnson (1995) – fails to consider and 
model the spatial dimension of the growth and convergence process although it is evident from López-Bazo et al. 
(1999), Fingleton (1999) and others that this may be necessary to avoid misspecification. 

15  Heterogeneity in a spatial context means, broadly speaking, that the parameters describing the data vary from 
location to location. 
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observations located nearby in geographic space. Then the problem of determining 
regimes in the data leads to one of identifying spatial regimes. For solving this problem 
exploratory spatial data analysis [ESDA]-tools such as Getis and Ord's (1992) local 
clustering technique may be used.  
 
The second step refers to testing whether convergence holds or not within the clubs of 
regions that correspond to the spatial regimes. This can be done through the use of 
specification techniques which take the single regime model as the null hypothesis. We 
consider two estimating equations. First, we estimate growth equation (3) by ordinary 
least squares. This estimate represents the unconstrained version of the growth model. 
Then we estimate a constrained version of the model by imposing cross-coefficient 
restrictions in line with the existence of multiple regimes. 
 
Let us assume a core-periphery pattern of growth, in accordance with theoretical models 
from New Economic Geography (see, for example, Fujita and Thisse 2002). The index 
A may denote the club of core regions and the index B that of peripheral regions. Then 
the constrained version of the growth model, that is the two-club specification of model 
(3) where each club of regions is represented by a different cross-sectional equation, can 
be formally expressed as  
 

0
0

A A A A

B B B B

       
= +       

       

g
g

Y
Y

γ ε
γ ε

 (7) 

 
where gA and gB are the dependent variables; YA and YB denote the explanatory 
variables; Aγ  and Bγ  the associated coefficients; and Aε  and Bε  the errors in the 
respective clubs of regions A and B. Let nA and nB denote the number of observations in 
club A and club B, respectively. Then n=nA+nB. 
 
For convenience, we express the simple block structure of the two club-convergence 
model (7) more succinctly in one equation  
 

= +g Y γ ε  (8) 
 
where the boldface variables , and,g Y γ  ε  refer to the combined variable, coefficient 
and error matrices, respectively. Since the full set of elements of the error variance 
matrix E[ε ε'] is generally unknown and cannot be estimated from the data due to a lack 
of degrees of freedom, it is necessary to impose a simplifying structure. The most 
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straightforward assumption is a model with a constant error variance over the whole set 
of observations: 
 

2[  '] nE σ= Iε ε  (9) 

 
where 2σ  is the constant error variance. This specification leads to the two club-
convergence model that conforms to the assumptions of the β-convergence test 
methodology outlined in the previous section. Estimation can be done by means of 
OLS. 
 
The constancy of parameters across clubs is a testable hypothesis, for example, by 
means of a Chow (1960) test. This is a test on the null hypothesis 0H : =A Bγ γ  which can 
be implemented for all coefficients jointly, as well as for each coefficient separately 
[that is, A Bα α= , A Bβ β= ]. The Chow test is distributed as a F variate with (2, n–4) 
degrees of freedom: 
 

1
2

2, 41
4

ˆ ˆ ˆ ˆ( ' ' )
ˆ ˆ'

R R U U
n

U Un

C F −
−

−= ∼ε ε ε ε
ε ε

 (10) 

 
where ˆRε  and Ûε  are the restricted and unrestricted OLS residuals, respectively. When 
spatial error dependence is present in the cross-sectional equations, however, the Chow 
test is no longer applicable16. 
 
 
2.3 Club-Convergence Testing in the Presence of Spatial Dependence 
 
Spatial dependence can invalidate the inferential basis of the test methodology since the 
assumption of observational independence no longer holds. It is convenient to 
distinguish two types of spatial dependence: substantive and nuisance spatial 
dependence (Anselin and Rey 1991). The relevance of substantive spatial dependence 
partly derives from the importance attributed to externalities in the contemporary 
growth literature, notably from knowledge externalities across regional boundaries, with 
knowledge acknowledged as an important driving force of economic growth. Nuisance 

                                                 
16  The Chow test has been extended to spatial models (see Anselin 1990). In both, the spatial lag and the spatial 

error models, the test is based on an asymptotic Wald statistic, distributed as chi-square with k=2 degrees of 
freedom. 
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spatial dependence, in contrast, can arise from a variety of measurement problems, such 
as boundary mismatching between the administrative boundaries used to organise the 
data series and the actual boundaries of the economic process believed to generate 
regional convergence or divergence. Nuisance spatial dependence may also arise when 
there are omitted variables that are spatially autocorrelated, given that the omitted 
variables are relevant and the dependent variable is itself spatially autocorrelated. 
 
Spatial dependence can invalidate the inferential basis of the test methodology17. Spatial 
autocorrelation in the error terms violates one of the basic assumptions of ordinary least 
squares estimation in linear regression analysis, namely, the assumption of uncorrelated 
errors. When the spatial dependence is ignored, the OLS-estimates will be inefficient, 
the t- and F-statistics for tests of significance will be biased, and the R2 goodness-of-fit 
measure will be misleading. In other words, the statistical interpretation of the club-
convergence model will be wrong. But the OLS-estimates themselves remain 
unbiased18. In contrast ignoring spatial dependence in the form of substantive spatial 
dependence will yield biased estimates. 
 
The Case of Substantive Spatial Dependence. An indirect way to control for the effects 
of interregional interactions in the two club-convergence model is through the inclusion 
of a spatially lagged dependent variable. If W is a (n, n)-matrix of spatial weights that 
specify the interconnections between different regions in the system, Equation (8) is 
respecified as 
 

ρ= + +g Y W gγ ε  with 1ρ <  (11) 

 
where , and,g Y γ  ε  are defined as before19. Equation (11) contains a spatially lagged 
dependent variable Wg and is, thus, referred to as the spatial (autoregressive) lag model 
of club-convergence, assuming the error process is white noise. ρ is the spatial 
autoregressive parameter. A significant spatial lag term indicates substantive spatial 
dependence, that is, it measures the extent of spatial externalities. 
 
                                                 
17  The literature on club-convergence has been very slow to account for spatial dependence, with notable exceptions 

of the studies by Baumont, Ertur and LeGallo (2003), and LeGallo and Dall'erba (2005). 

18  For a more technical discussion of the effect of spatial autocorrelation see Anselin (1988a). 

19  The vector of error terms ε is assumed to be normally distributed and independently of Y and Wg, under the 
assumption that all spatial dependence effects are captured by the lagged variable. 
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In this study, W is a row-standardised binary spatial weight matrix20. While there is a 
number of ways to specify W (see, for example, Cliff and Ord 1973, Upton and 
Fingleton 1985, Anselin and Bera 1998), we specify the spatial weights on the basis of a 
distance criterion such that regions i and j are defined as neighbours (that is wij=1) when 
the great circle distance between them [more precisely: their economic centres] is less 
than a critical value21, say δ. By construction, the elements of the main diagonal of 

( ( ))ijw δ=W  are set to zero to preclude an observation from directly predicting itself. 
Row-standardisation of the matrix scales each element in the spatial weight matrix so 
that the rows sum to unity, producing a spatial lag variable Wg  that reflects the average 
of growth rates from neighbouring observations. 
 
This two club spatial lag model is a model which poses certain problems for estimation 
(see Cliff and Ord 1981, Upton and Fingleton 1985). But it can be estimated using 
maximum likelihood procedures22 (see Anselin 1988a) assuming that there is a 
homogenous relationship between g and Y across the spatial sample of observations. 
Under the assumption of a normal distribution for the error terms, the corresponding 
likelihood function may be derived. A crucial role is played hereby by the Jacobian 
term, that is, the determinant of the spatial filter (In–ρ W). The estimates for the 

2and σγ   coefficients can be expressed in function of the spatial autoregressive 
parameter ρ, and the maximum of the resulting non-linear concentrated likelihood 
function can be found by means of a straightforward search (see Anselin and Bera 1998 
for technical details). 
 
The Case of Spatial Error Dependence. Another form of spatial dependence, nuisance 
or error spatial dependence, occurs when the disturbances in the cross-section growth 
regression are not independently distributed across space. As a result OLS estimates 

                                                 
20  Row-standardisation guarantees estimates for the spatial autoregressive coefficient, ρ, that yield a stable spatial 

model (see Anselin and Bera 1998). 

21  The identification of the critical distance δ in this study is based on sensitivity analyses along with theoretical 
considerations. 

22  Another approach towards estimating the two club spatial lag model is based on the instrumental variable (IV) 
principle. This is equivalent to the two stage least squares estimation in systems of simultaneous equations. The 
correlation between the spatial lag Wg and the error term ε is controlled for by replacing the spatial lag variable 
with an appropriate instrument, that is, a variable which is highly correlated with Wg, but uncorrelated with ε. 
The choice of the appropriate instrument is a major problem in the practical implementation of this approach. 
Since there are insufficient variables available to construct a good instrument in the context of the current study, 
we will not use this approach here. 
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will be inefficient. We follow the standard assumption that the error term in Equation 
(8) follows a first order spatial autoregressive process: 
 

λ= +W µε ε  with 1λ < . (12) 

 
Then the reduced form of the two club-convergence model with spatial error 
dependence is given as 
 

1(1 ) ,λ −= + −g Y W µγ   (13) 

 

where W is defined as above23. The error term µ  is assumed to be well-behaved, that is,  
µ  is a (n, 1)-vector of i.i.d. errors with [ ] 0E =µ  and 2 2[ ]E σ=µ . In order to stress the 
difference with substantive spatial dependence, the autoregressive parameter in the error 
dependence club-convergence model is expressed by the symbol λ  rather than ρ. The 
coefficient λ  is considered to be a nuisance parameter, usually of little interest in itself, 
but necessary to correct for the spatial dependence. The row and column sums of 

1( )n λ −− WΙ  are bounded uniformly in absolute value by some finite constant so that 
( )n λ− WΙ  is non-singular. 
 

It is easy to show that the variance matrix of the error term ε  is no longer the 
homoskedastic and uncorrelated 2

nσ I , but instead becomes24 
 

( ) ( ) -12[ '] n nE σ λ λ= − −  I W I Wε ε ' . (14) 

 
As is well-known, use of ordinary least squares in the presence of non-spherical errors 
would yield unbiased estimates for club-convergence (and intercept) parameters, but a 
biased estimate of the parameters' variance. Thus, inferences based on the OLS-
estimates would be misleading. Instead inferences about the convergence process 
should be based on maximum likelihood estimation25. A normal distribution is assumed 
                                                 
23  From Equation (13) it is evident that a random shock that affects growth in a region diffuses to all the others as 

described in Rey and Montouri (1999). Note that the spatial process behind the two club-convergence model 
could be originated by some kind of spillover mechanism. 

24  Note that Equation (12) can also be expressed as ( )-1
n λ= −ε I W µ . 

25 Kelejian and Prucha (1999) suggest an alternative estimation approach leading to a generalised moment estimator 
that is computationally simpler, irrespective of the sample size. 
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for the error term ε  and the corresponding likelihood function is derived. As in the 
spatial lag specification, a crucial role is played by the Jacobian term, that is, the 
determinant of the spatial filter ( )n λ− WΙ . The estimates for the 2and σγ   
coefficients can be analytically expressed in function of the spatial autoregressive 
parameter λ , and the maximum of the resulting non-linear concentrated likelihood 
function can be found by means of a straightforward search (see Anselin and Bera 
1998). 
 
The standard approach to detect the presence of spatial dependence in the club 
specific β-convergence model (8) is to apply diagnostic tests. This is complicated by the 
high degree of formal similarity between a spatial error and spatial lag specification of 
the club-convergence hypothesis. It is straightforward to see that further manipulations 
of Equation (13) lead to an alternative structural form known as common factor or 
spatial Durbin model (Anselin 1990). This specification includes both a spatially lagged 
dependent variable as well as spatially lagged explanatory variables26: 
 

.λ λ= + − +g W g Y W Yγ γ µ  (15) 

 
Model (15) has a spatial lag structure, but with the spatial autoregressive parameter λ  
from Equation (12), and a well-behaved error term µ . The formal equivalence between 
this model and the spatial error model described by (13) is only satisfied if a set of non-
linear constraints on the coefficients is satisfied. Specifically, the negative of the 
product of λ  (the coefficient of W g ) with each γ (coefficient of Y) should equal λ− γ   
(see Anselin 1988a for more details). This is termed the common factor hypothesis in 
spatial econometrics27. 
 
The implications are twofold. First, it is very difficult to distinguish substantive spatial 
dependence from nuisance spatial dependence in a diagnostic test, since the latter 
implies a special form of the former. Second, once a spatial error specification of the 
club-convergence hypothesis has been chosen, the common factor constraints need to be 
satisfied, or else this specification will be invalid. 
                                                 
26  In practice, the spatially lagged constant is not included in WY since there is an identification problem for a row-

standardised W. 

27  The common factor hypothesis can be tested, for example, by means of a likelihood ratio test: 
2
(1) 2( )r urL Lχ = − −  where ( )r urL L  is the value of the log likelihood function for the restricted (unrestricted) 

estimator. 
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Testing for Possible Presence of Spatial Dependence in the Club-Convergence 
Analysis. In view of the above discussion it is clear that we need two types of diagnostic 
tests for spatial dependence: Tests for substantive spatial dependence and tests for 
spatial error dependence. The latter have received most attention in the literature. The 
best known approach is an application of Moran's I to the residuals of the two club β-
convergence model (see Cliff and Ord 1972, 1973). In matrix notation the statistic takes 
the form 
 

ˆ ˆ'
ˆ ˆ'

I = Wε ε
ε ε

 (16) 

 
where W is the spatial weights matrix as defined above, and ε̂  the (n, 1)-vector of OLS 
residuals of the specification .= +g Y γ ε  Statistical inference can be based on the 
assumption of asymptotic normality, or alternatively, when the distribution is unknown, 
on a theoretical randomisation or empirical permutation approach (Cliff and Ord 1981). 
Anselin and Rey (1991) have shown that this test statistic is very sensitive to the 
presence of other forms of specification error, such as non-normality and 
heteroskedasticity. The test is, moreover, not able to properly discriminate between 
spatial error dependence and substantive spatial dependence28. 
 
An alternative, more focused test for spatial error dependence is based on the Lagrange 
multiplier principle, suggested by Burridge (1980). It is similar in expression to Moran's 
I and is also computed from the OLS residuals. But a normalisation factor in terms of 
matrix traces is needed to achieve an asymptotic chi-square distribution [with one 
degree of freedom] under the null hypothesis of no spatial dependence 0[H : =0].λ  The 
test statistic is given by 
 

( ) ( )
( )

2

2
1
ˆ

2

ˆ ˆ'
LM error

'tr
σ

W
=

W W +W

ε ε
 (17) 

 

                                                 
28  Focused tests for spatial dependence have been developed in a ML framework, and generally take the Lagrange 

multiplier form rather than the asymptotically equivalent Wald or Likelihood Ratio form, because of ease of 
computation. The Wald and Likelihood Ratio tests are computationally more demanding because they require 
ML estimation under the alternative; for technical details see Anselin and Bera (1998). 
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where ε̂  is defined as above, tr stands for the trace operator29 and 2σ̂  is a maximum 
likelihood estimator for the error variance, 2 1 ˆ ˆˆ ( ' ).nσ = ε ε  
 
A test for substantive spatial dependence, that is for an erroneously omitted spatially 
lagged dependent variable, can also be based on the Lagrange multiplier principle as 
suggested by Anselin (1988b). As in the case of LM(error) the test requires the results 
of an OLS-regression, but its form is slightly more complex. Formally, the test reads as  
 

( ) 2
21

ˆ
ˆ( ' )

LM lag ˆ
σ

W g
=

J
ε

 (18) 

 
with  
 
 

( ) ( ) ( )2
2 21

ˆ
ˆ ˆ ˆ ˆ' 'tr

σ
σ + J = W Y M W Y W W +Wγ γ  (19) 

 
where W g  is the spatial lag, ˆW Y γ  is a spatial lag for the predicted values ˆ( )Y γ  and 

M is a familiar projection matrix, 1( ' ) '.n
−= −M I Y Y Y Y  The other notation is as 

before. The LM(lag) test is also chi-square distributed with one degree of freedom under 
the null hypothesis of no spatial dependence [ ]0H : 0ρ = . 
 
Anselin and Florax (1995) have shown that robust Lagrange multiplier tests may have 
more power in discriminating between substantive and nuisance spatial dependence. 
The robust tests are similar to those given in Equations (17) and (18)-(19), extended 
with a correction factor to account for local misspecification. The robust test for the 
presence of a spatial autoregressive error process when the specification contains a 
spatially lagged dependent variable reads as 
 

( )
( )

( ) ( )
2 2

22 11 1
ˆ ˆ*

12 2

ˆˆ ˆ ˆ' ' '
LM error

ˆ' 1 '

tr

tr tr
σ σ

−

−

 − 
 − 

W W W +W J W g
=

W W +W W W +W J

ε ε ε
, (20) 

 
while the robust test for an erroneously omitted spatially lagged dependent variable in 
the presence of a spatial error process is given by 

                                                 
29  The sum of the main diagonal elements of the matrix in question. 
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( ) ( )
( )

2 2
21 1

ˆ ˆ*
2

ˆ ˆ ˆ' '
LM lag ˆ 'tr

σ σ
−

−

W g W
=

J W W +W

ε ε ε
. (21) 

 
Note that the distinction between a spatial error and a spatial lag specification of the 
club-convergence hypothesis is often difficult in practice. Even though the 
interpretation of the two specifications is fundamentally different, they are closely 
related in formal terms as seen above. We use the canonical classical (forward step) 
strategy outlined in Florax, Folmer and Rey (2003) to effectively distinguish between 
the alternative specifications of the club-convergence hypothesis and to respecify the 
club-convergence model in the presence of spatial dependence. The strategy consists of 
the estimation of the standard club-convergence model without a spatially lagged 
variable and with a well-behaved error term as a first step. Subsequently, the model is 
checked for spatial dependence. The tests applied in this framework are the (robust) 
Lagrange multiplier tests for spatial residual autocorrelation and spatial lag dependence. 
 

 

3 Revealing Empirics 
 
3.1 Sample Data and Spatial Regimes 
 
The data used in this study are based on the European System of Accounts and – as in 
most other convergence studies – stem from the EUROSTAT REGIO database. We use 
the log-normal per capita GRP30 over the period 1995 to 2000 expressed in ECUs, the 
former European Currency Unit, replaced by the Euro in 1999 to measure the output 
differences. The time period is short due to a lack of reliable figures for the regions in 
the new member states and the accession countries of the EU. This comes partly from 
the change in accounting conventions now used in CEE economies. But more 

                                                 
30  Some authors (for example, Armstrong 1995, López-Bazo et al. 1999) use per capita GRP expressed in 

purchasing power standards (PPS). But as Ertur, LeGallo and LeSage (2004) point out, the construction of 
regional accounts in PPS that are comparable across space and time is very complicated and can raise serious 
problems. First, the conversion should be based on regional purchasing power parity, but – due to data non-
availability – this adjustment is computed on the basis of national price levels. Second, per capita GRP expressed 
in PPS can change in one regional economy relative to another not only because of a difference in the rate of 
GRP growth in real terms but also because of relative price level changes. This complicates the analysis of 
growth changes over time because a relative increase in per capita GRP arising from a reduction in the relative 
price level might have a different implication than one resulting from a relative growth in real GRP (Ertur, 
LeGallo and LeSage 2004). 
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important, even if estimates of the change in the volume of output did exist, these would 
be impossible to interpret meaningfully because of the fundamental change of 
production, from a centrally planned to a market system. As a consequence, figures for 
GRP are difficult to compare between the CEE and the EU-15 regions until the mid of 
1990s (European Commission 1999). Our sample includes 256 NUTS-2 regions31 in 25 
countries: 
 
•  the EU-15 member states32: Austria [9 regions], Belgium [11 regions], Denmark 

[1 region], Finland [6 regions], France [22 regions], Germany [40 regions], Greece 
[13 regions], Ireland [2 regions], Italy [20 regions], Luxembourg [1 region], the 
Netherlands [12 regions], Portugal [5 regions], Spain [16 regions], Sweden 
[8 regions], and the UK [37 regions]; 

 

•  eight new member states: Czech Republic [8 regions], Estonia [1 region], Hungary 
[7 regions], Latvia [1 region], Lithuania [1 region], Poland [16 regions], the Slovak 
Republic [4 regions] and Slovenia [1 region]; and 

 
•  the two accession countries: Bulgaria [6 regions] and Romania [8 regions]. 
 
NUTS-2 regions33 although considerably varying in size are generally considered to be 
the most appropriate spatial units for modelling and analysis (Fingleton 2001). In most 
cases the NUTS-2 region is sufficiently small to capture subnational variations. But we 
are aware that NUTS-2 regions are formal rather than functional regions and their 
delineation does not represent the boundaries of growth and convergence processes very 
well34. The choice of the NUTS-2 level might also give rise to a form of the modifiable 
                                                 
31  A full list of the regions along with the data used appear in the Appendix. 

32  We exclude the French overseas Departments (French Guyane in South America and the small islands 
Guadaloupe, Martinique and Réunion), the Portuguese regions of Azores and Madeira, the Canary Islands and 
Ceuta y Mellila in Spain. 

33  NUTS is the acronym for "Nomenclature of Territorial Units for Statistics" which is a hierarchical system of 
regions used by the statistical office of the European Community for the production of regional statistics. At the 
top of the hierarchy are the NUTS-0 regions (countries), below which are NUTS-1 regions (regions within 
countries) and then NUTS-2 regions (subdivisions of NUTS-1 regions). 

34  The European Commission uses NUTS-2 and NUTS-3 regions as targets for the convergence process, and has 
defined NUTS-2 as the spatial level at which the persistence or disappearance of unacceptable inequality should 
be measured (Boldrin and Canova 2001). Since 1989, NUTS-2 is the spatial level at which eligibility for 
Objective 1 Structural Funds is determined (European Commission 1999). Cheshire and Carbonaro (1995) argue 
that functional urban areas would be more appropriate, but the problem with these spatial units is that they are 
dynamic rather than static so that their definition is not fixed in time. 
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areal unit problem35 well known in geography (see, for example, Arbia 1989). This may 
induce nuisance spatial dependence. 
 
The introduction of heterogeneity into growth models provides a channel through which 
income distribution affects economic growth. A large number of theoretical studies have 
documented the importance of initial conditions with respect to the distribution of 
income for the evolution of economies, and their stready-state behaviour may cluster 
around different steady-state equilibria (Galor 1996). In this study, club formation is 
driven by spatial differences in per capita GRP at the beginning of the sample period. 
We use Getis and Ord's (1992) *( )-statistic G δ  as a spatial heterogeneity descriptor to 
identify spatial regimes in the data in accordance with LeGallo and Dall'erba (2005). 
Formally, the statistic is defined as 
 

( )
( )*

1*

1

n

ij jt
j

it n

jt
j

w y
G

y

δ
δ =

=

=
∑

∑
 (22) 

 
where jty  denotes the log-normal per capita GRP in region j at time t=1995, * ( )ijw δ  is 
the        (i, j)-th element of a row-standardised binary spatial weight matrix W* where 

* 1ijw =  if the distance from region i to region j, say dij, is smaller than the critical 
distance band δ , and * 0ijw =  otherwise36. The statistic is based on the expected 
association between weighted points within a distance δ  of region i. The statistic's 
value then becomes a measure of spatial clustering [or non-clustering] for all regions j 
within δ  of region i. When the statistic is computed for each δ  and for all i, one has a 
description of the clustering characteristics of the study area (Ord and Getis 1995). 
 

*( )G δ  is well suited to identify spatial regimes. But rather than using the statistic as 
defined by Equation (22) we use the statistic in its standardised form 
                                                 
35  The modifiable areal unit problem [MAUP] consists of two related parts: the scale problem and the zoning 

problem. The scale problem refers to the challenge to choose an appropriate spatial scale for the analysis while 
the zoning problem is concerned with the spatial configuration of the sample units. Study results may differ 
depending on the boundaries of the spatial units under study. If the regions of a country, for example, were 
configured differently, the results based on data for those regions would be different (Getis 2004). 

36 Note that the statistic is based on a specification of the spatial weight matrix that is distinct from that in 
subsection 2.3, a specification where the main diagonal elements are set equal to one. This allows the statistic to 
include the information at region i. The statistic is asymptotically normally distributed as δ increases. Under the 
null hypothesis that there is no association between i and j within δ of i, the expectation is zero, the variance is 
one, thus values of this statistic may be interpreted as the standard normal variate. 
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where positive values indicate spatial clustering of high values, and negative values 
clustering of low values. In this study 350 kmδ =  has been a priori chosen, on the basis 
of sensitivity analyses combined with theoretical considerations. Based on this 
information we determine two spatial regimes [clubs] as follows: If ( )*[ ]itz G δ  is 
positive, region i is allocated to club A; and if ( )*[ ]itz G δ  is negative, region i becomes a 
member of club B37. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1: Two spatial regimes in the initial per capita GRP 
identified by means of the Getis-Ord statistic ( )*G δ  
[with t=1995, δ=350 km] 

 

                                                 
37 Club A (club B) represents a strong pattern which suggests that around region i regions with high (low) per capita 

GRP tend to be clustered more often than would be due to random choice. 

Spatial Regime A 
Spatial Regime B 
Not Included
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Regions with low income tend to cluster in space as well as economies with high 
income. Figure 1 indicates that there is substantial geographic homogeneity within each 
group and that each group may be viewed as a spatial regime. The split into two clubs 
seems to be quite reasonable. The clubs of regions appear to reflect very different 
production opportunities. These differences in turn may suggest – from a neoclassical 
perspective – that the more developed regions in groups A have higher output-labour 
ratios than implied by their capital-labour ratios alone. Club A consists of 173 regions 
and includes all the EU-15 regions except those in Greece and Portugal, some Spanish 
regions, some Southern Italian regions, regions located in Eastern Austria, as well as 
Dresden and Berlin; plus two regions located in CEE [Slovenia and the most Western 
region in the Czech Republic]. Club B [83 regions] is made up of all the remaining 
NUTS-2 regions38.  
 
 
3.2 Estimation Results 
 
Given the above two clubs of regions, we estimate the constrained version of the growth 
model, that is, the two club-convergence model (8) with independent and 
homoskedastic errors, as suggested by the canonical classical strategy to distinguish 
between the alternative specifications of the club-convergence hypothesis (see 
subsection 2.3). The first column of Table 1 presents the parameter estimates and 
corresponding probability levels39. The model yields highly significant and negative 
coefficients for the starting income levels ( ˆ

Aβ = –0.054 with s.d.=0.007 and ˆ
Bβ = –0.021 

with s.d.=0.004). The null hypothesis on the joint equality of coefficients across the two 
clubs is rejected by the Chow-Wald test40. The same indication is provided by the tests 
on the individual coefficients. This strongly supports the view of two-club convergence 
in Europe. 
 
 
 
 
 

                                                 
38  The Appendix details the regions in the two clubs. 

39  All estimation and specification tests in this study were carried out with SpaceStat (Anselin 1999). 

40  A value of 12.225 for a chi-square distribution with two degrees of freedom. 
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Table 1: Two Club-Convergence Testing in a Cross-Regional [256 regions] 
Context in Europe, 1995-2000 

 The iid Specification 
with Constant Error 
Variance [OLS] 

The Spatially 
Autocorrelated Error  

Specification [ML] 

Parameter Estimates 
(p-values in brackets) 

Constant 
Club A 
Club B 

Beta 
Club A 
Club B 

Lambda 

 
 
 

0.580 (0.000)  
0.251 (0.000) 

 
-0.054 (0.000) 
-0.021 (0.000) 

 
 
 

0.205 (0.001) 
0.297 (0.000) 

 
-0.016 (0.004) 
-0.026 (0.000) 
0.908 (0.000) 

The Time to Convergence 
Annual Convergence Rate 
(in percent) 

Club A 
Club B 

Half-Distance to the Steady-State  
(in years, 95% bounds in brackets) 

Club A 
Club B 

 
 

 
 4.8 
2.0 

 
 

14.5 (11.7-19.1) 
34.4 (25.4-53.2) 

 
 

 
 1.6 
2.4 

 
 

44.6 (26.6-136.1) 
28.7 (22.2-40.5) 

Performance Measures 
R2 
Log Likelihood 
Sigma sq. 

 
0.307 

525.802 
0.00098 

 
0.353 

634.179 
0.00037 

Diagnostic Tests 
(p-values in brackets) 

Heteroskedasticity 
Koenker-Bassett 
Breusch-Pagan 
 

Spatial Error Dependence 
Moran's I 
LM(error) 
Robust LM(error) 
Likelihood Ratio 
 

Spatial Lag Dependence 
LM(lag) 
Robust LM(lag) 
 

Common Factor Hypothesis Test 
Wald Test 
Likelihood Ratio Test 

 
Chow-Wald Tests on Coefficient Stability 

Joint 
Constant 
Beta 

 
 
 

0.717 (0.397) 
– 

 
 

22.592 (0.000) 
425.835 (0.000) 

45.588 (0.000) 
– 

 
 

404.463 (0.000) 
24.226 (0.000) 

 
 

– 
– 

 
 

12.225 (0.000) 
17.277 (0.000) 
15.322 (0.000) 

 

 
 

– 
24.127 (0.000) 

 
 

– 
– 
– 

216.754 (0.000) 
 
 

6.159 (0.013) 
– 

 
 

2.088 (0.352) 
1.936 (0.380) 

 
 

1.927 (0.382) 
1.758 (0.185) 
1.889 (0.169) 

Notes: The iid specification of the two club-convergence model is defined by Equations (8)-(9), and the spatially autocorrelated 
error specification by Equation (13), given the two clubs of regions identified by means of the Getis-Ord statistic G*(δ). Beta is 
the convergence coefficient, Lambda the parameter of the autoregressive error process. Fitting the models results into the time 
to convergence [see Equations (5)-(6)]. R2 is the ratio of the variance of the predicted values over the variance of the observed 
values for the dependent variable in the case of the spatial error specification; Sigma sq. is the error variance. Heteroskedasticity 
is tested using the Koenker-Bassett (1982) test and the Breusch-Pagan (1979) test, respectively. Spatial error dependence is 
tested using Moran's I [see Equation (16)], LM(error) [see Equation (17)], and robust LM(error) [see Equation (20)]; spatial lag 
dependence is tested using LM(lag) [see Equations (18)-(19)] and robust LM(lag) [see Equation (21) with Equation (19)]. The 
Likelihood Ratio test on the spatial error dependence corresponds to twice the difference between the log likelihood in the 
spatial error model specification (13) and the log likelihood in the specification given by Equations (8)-(9); it is distributed as 
chi-square variate with one degree of freedom. The Wald and the Likelihood Ratio tests on the set of non-linear constraints 
implied by the common factor model [see Equation (15)] follow a chi-square distribution asymptotically, with two degrees of 
freedom. The Chow-Wald tests [see Equation (10)] on the coefficient stability are based on asymptotic Wald statistics, 
distributed as chi-square with two degrees of freedom (joint test) and one degree of freedom (individual coefficient tests); in the 
case of the spatially autocorrelated error specification the Wald statistics are spatially adjusted (Anselin 1990). 
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The bottom part of the first column gives the diagnostics41. The Koenker-Bassett test 
points to homoskedasticity. All the diagnostics for spatial dependence reject the null 
hypothesis of absence of spatial dependence at the one percent level of significance. 
This indicates that the two club-convergence model is misspecified due to omitted 
spatial dependence42. The Lagrange multiplier tests and their robust versions point to a 
spatial error specification rather than a spatial lag one43. This result appears to be quite 
usual in studies that have tested for spatial dependence, though in the context of 
(un)conditional convergence and in a different modelling framework (see Fingleton 
1999, Rey and Montouri 1999, López-Bazo, Vayá and Artís 2004, and others). 
 
The ML-estimates of the spatial error specification, given by Equation (13), are reported 
in the second column of the table44. Relative to the OLS-estimates of the two club-
convergence model with well-behaved error terms, the spatial error specification 
achieves a higher log likelihood which is to be expected, given the indications of the 
various diagnostics for spatial error dependence in the initial model and the high 
significance of Lambda ( λ̂ = –0.908 with p=0.000). The estimated coefficients indicate 
that the intercept and the initial income variable are highly significant with appropriate 
signs on the coefficient estimates. The β-parameter estimates are negative: ˆ

Aβ = –0.016 
with s.d.=0.005 and ˆ

Bβ = –0.026 with s.d.=0.005, and, thus, consistent with an inference 
of two club-convergence. 
 
Estimation of the rate of convergence is slightly above the traditional figure of two 
percent per annum in the case of Club B and slightly below in the case of Club A. It is 
estimated to be 2.4 percent for regional economies in Club B. If we think of its 
                                                 
41  Note that many of the specification tests are based on normality of errors. But this is rejected by the Jarque-Bera 

(1987) test. Because of the large sample, the test is very powerful, detecting significant deviations from normality 
which have, however, little practical significance in practice. 

42  This conclusion confirms that spatial dependence in growth rates is not just caused by the spatial pattern in the 
distribution of initial GRP per capita. 

43  The LM(error) test value is equal to 425.835 which is highly significant when referred to the chi-square 
distribution with one degree of freedom, and exceeds the LM(lag) test value of 404.463. The same indication is 
given by the robust versions of the LM tests: LM*(error)=45.588 exceeds LM*(lag)=24.226. 

44  The spatial view of the Breusch-Pagan test reveals heterogeneity. To accommodate error heterogeneity we 
estimated a clubwise error specification using a generalised methods of moments approach (Kelejian and Prucha 
1999). It is beyond the scope of this paper to go into details, but it is worth mentioning that jointly modelling 
error heteroskedasticity and spatial dependence does change neither the estimates of the convergence parameters 
nor the estimates of the constants. The β-parameter estimates are ˆ

Aβ = –0.016 (0.001) and ˆ
Bβ = –0.026 (0.000). 

The α-parameter estimates are ˆ = 0.206 (0.000) Aα and ˆBα = 0.296 (0.000). λ̂ = 0.904 (0.000) and Sigma sq. is 

0.00021. 
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economic meaning, however, we note that a speed of 2.4 percent per year for regional 
economies in Central and Eastern Europe is quite slow. It implies, for example, that the 
regions take 28.7 years (95 percent bounds of 22.2–40.5 years) for half of the distance 
between the initial level of income and the club-specific steady-state level to vanish. In 
the case of Club A the convergence model estimates an annual convergence rate of 1.6 
percent. The associated half time is 44.6 years with approximate 95 percent bounds: 
26.6–136.1 years. The slow speed of 2.4 percent and 1.6 percent per year in Club B and 
Club A, respectively, suggests that technology does not instantaneously flow across 
regions, and countries in Europe. The theoretical reason for such a slow speed of 
technical adaptation may be the existence of barriers to spillovers of knowledge45. 
 
Since the constant term associated with Club A is smaller than that for Club B, regions 
of type A will converge to a lower level of per capita GRP in the long-run. This result is 
interesting because it suggests that regional economies that are predicted to be richer in 
a few decades from now on are not the same regions that are wealthy today. These 
results point to a heterogeneous pattern in the convergence process involving European 
regions. Thus, heterogeneity exists not only in the convergence rate, but also in the 
steady-state level. The LM(lag) test on the null hypothesis of the absence of an 
additional autoregressive spatial lag variable, as well as the Likelihood Ratio test and 
the Wald test on the common factor hypothesis46 cannot be rejected at the ten percent 
level of significance, indicating that the spatial error model specification is appropriate. 
 
There are several implications of the spatial error specification of the club-convergence 
hypothesis. The first is evident when comparing the implied rates of convergence from 
the original two-club-convergence model with those from the spatial error model 
specification. The effect of explicitly taking the spatial error dependence into account is 
to drastically lower the estimated rate of convergence in the case of Club A and to 
slightly increase the estimated rate in the case of Club B. Hereby, the estimate of the 
convergence rate of the initially poorer regions [Club B] turns out to be higher than the 
one of the club of initially wealthier regions [Club A]. The second implication concerns 
a comparison of the estimates for the club-specific constant terms [the equilibrium rates] 
from the initial club-convergence model (see the first column in Table 1) against the 

                                                 
45  For prima-facie empirical evidence of barriers to knowledge spillovers between high-technology firms in Europe  

see Fischer, Scherngell and Jansenberger (2004). 

46  The Likelihood Ratio test statistic is 1.936 (p=0.380), and the Wald statistic 2.088 (p=0.352). Neither are strongly 
significant, indicating no inherent inconsistency in the spatial error specification.  
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estimates from the spatial error model specification (see the second column). The effect 
of explicitly taking the spatial error dependence into account is to lower the equilibrium 
rate for the regions in Club A and to increase that for the regions in Club B so that the 
CEE regions will converge to a higher equilibrium level of per capita GRP than most of 
the EU-15 regions. 
 
The third implication follows from the properties of the spatial error model as a data 
generating process. From Equation (13) it is evident that a random shock introduced 
into a specific region will not only affect the growth rate in that region but – through the 
inverse of the spatial filter (1–λW) – also the growth rates of other regions in the club to 
which the region belongs. The fourth implication refers to the tests on coefficient 
homogeneity across the two clubs. While the original two club-convergence model 
rejects the null hypothesis on the joint equality of coefficients, the spatial error 
specification cannot do it. Its value is 1.936 (p=0.380) for a chi-square distribution with 
two degrees of freedom. The same indication is provided by the tests on the individual 
coefficients. In light of the results obtained from the Chow-Wald tests the conclusions 
from the spatial error model specification have to be tempered somewhat from a spatial 
econometric perspective. 
 

  

4 Summary and Conclusions 

 
The process of regional convergence in Europe is complex and cannot be adequately 
captured by the growth regression convergence models that have thus far tended to 
dominate research and debate in this field. This paper contributes to the convergence 
debate by suggesting a general setup for club-convergence testing that allows modelling 
spatial dependence and heterogeneity of the convergence process. The approach takes 
the Barro-style equation as a point of departure and relates the concept of club-
convergence to the notion of spatial heterogeneity. In essence, it consists of three major 
steps. The first involves identifying spatial regimes in the data, in the sense that groups 
[clubs] of regions identified by the spatial distribution of initial per capita GRP obey 
distinct [club-specific] growth regressions. The second refers to checking whether 
convergence holds or not within the clubs of regions that correspond to the spatial 
regimes. If the null hypothesis of a single regime model is rejected, the third and final 
step of the approach applies. This step involves testing for spatial dependence in the 
club-specific convergence model since spatial dependence invalidates the inferential 
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basis of the approach and requires to respecify the test equation appropriately. To 
effectively distinguish between spatial error and spatial lag specifications of the club-
convergence hypothesis we suggest to follow the canonical classical (forward step) 
strategy outlined in Florax, Folmer and Rey (2003). The tests to apply in this context are 
the (robust) Lagrange multiplier tests for spatial residual autocorrelation and spatial lag 
dependence. 
 
We have considered the behaviour of output differences, measured in terms of per 
capita GRP, across 256 NUTS-2 regions in 25 European countries to apply the approach 
and to see whether the cross-regional growth process in Europe shows club-
convergence or not. Our results are threefold. First, we reject the standard [that is, the 
single regime] Barro-style regression model which underlies most empirical work on 
regional income convergence, in favour of a two regime [club] alternative in which 
different regional economies obey different linear regressions when grouped by means 
of Getis and Ord's (1992) local clustering technique. Second, the results point to a 
heterogeneous pattern in the pan-European convergence process. Heterogeneity appears 
in both the convergence rate and the steady-state level. But, third, the study reveals that 
spatial error dependence introduces an important bias in our perception of club-
convergence and illustrates that neglection of this bias would give rise to misleading 
conclusions. 
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Appendix: The Regions and the Data Used in the Study 
 

Country NUTS-2 Region 
Club 

Membership 
GRP 1995  

per capita 
in ECU 

GRP 2000 
per capita 
in EURO 

Austria Burgenland B 14,471.4 16,362.3 
 Niederösterreich B 18,010.3 21,616.2 
 Wien B 31,565.1 35,067.6 
 Kärnten A 19,129.5 21,440.0 
 Steiermark B 18,649.8 21,417.8 
 Oberösterreich B 20,965.3 24,445.6 
 Salzburg A 25,927.4 29,220.7 
 Tirol A 22,548.7 25,202.9 
 Vorarlberg A 23,251.8 26,347.1 
     
Belgium Région Bruxelles-Capitale A 42,263.1 48,920.2 
 Antwerpen A 24,487.9 28,109.5 
 Limburg (B) A 17,865.4 20,364.3 
 Oost-Vlaanderen A 18,142.9 21,056.1 
 Vlaams Brabant A 20,496.4 25,217.2 
 West-Vlaanderen A 19,187.1 22,174.8 
 Brabant Wallon A 18,572.5 22,639.7 
 Hainaut A 14,067.6 15,915.0 
 Liège A 16,452.4 18,372.2 
 Luxembourg (B) A 15,542.1 17,145.3 
 Namur A 14,727.3 16,841.9 
     
Bulgaria Severozapadan B 1,006.2 1,573.6 
 Severoiztochen B 1,012.2 1,479.4 
 Severozapad B 1,045.4 1,512.4 
 Yugozapaden B 1,616.1 2,207.0 
 Yuzhen Tsentralen B 1,089.9 1,389.7 
 Yugoiztochen B 1,009.7 1,691.5 
     
Czech Republic Praha B 7,073.7 11,689.7 
 Stredni Cechy B 2,997.0 4,536.4 
 Jihozapad A 3,658.7 5,059.8 
 Severozapad B 3,609.3 4,423.9 
 Severovychod B 3,353.5 4,645.5 
 Jihovychod B 3,433.2 4,726.2 
 Stredni Morava B 3,277.5 4,344.8 
 Moravskoslezsko B 3,638.9 4,505.0 
     
Denmark Denmark A 26,387.1 32,575.7 
     
Estonia Estonia B 1,884.2 4,063.7 
     
Finland Itä-Suomi A 15,014.5 18,167.6 
 Väli-Suomi A 16,373.4 20,574.0 
 Pohjois-Suomi A 17,676.8 22,297.4 
 Uusimaa A 25,724.6 34,898.4 
 Etelä-Suomi A 18,103.1 23,394.6 
 Åland A 23,817.6 33,926.6 
     
France Île de France A 30,888.4 36,616.1 
 Champagne-Ardenne A 18,337.4 21,873.0 
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 Picardie A 16,890.3 19,039.6 
 Haute-Normandie A 18,757.1 22,022.8 
 Centre A 18,535.2 20,996.5 
 Basse-Normandie A 17,090.6 19,734.6 
 Bourgogne A 18,185.2 21,442.4 
 Nord-Pas-de-Calais A 15,886.5 18,652.1 
 Lorraine A 17,275.9 19,312.2 
 Alsace A 20,977.8 23,790.8 
 Franche-Comté A 17,759.7 20,265.4 
 Pays de la Loire A 17,587.8 20,826.3 
 Bretagne A 16,769.7 19,933.1 
 Poitou-Charentes A 16,579.1 19,179.5 
 Aquitaine A 17,776.3 20,899.1 
 Midi-Pyrénées A 17,605.5 20,477.6 
 Limousin A 16,205.5 18,959.9 
 Rhône-Alpes A 20,168.8 23,852.0 
 Auvergne A 16,600.3 20,006.1 
 Languedoc-Roussillon A 15,376.0 17,968.9 
 Provence-Alpes-Côte d'Azur A 18,365.3 21,001.4 
 Corse A 14,493.3 17,588.5 
     
Germany Stuttgart A 27,944.7 31,135.3 

 Karlsruhe A 26,541.4 29,112.6 
 Freiburg A 22,498.8 24,408.3 
 Tübingen A 23,735.1 25,553.9 
 Oberbayern A 31,173.9 35,827.8 
 Niederbayern A 21,775.6 22,573.7 
 Oberpfalz A 22,260.5 25,029.8 
 Oberfranken A 22,901.9 24,044.5 
 Mittelfranken A 26,412.3 29,318.3 
 Unterfranken A 22,255.0 24,068.5 
 Schwaben A 23,701.7 24,963.4 
 Berlin B 23,278.2 22,197.6 
 Brandenburg A 15,063.8 16,117.9 
 Bremen A 30,308.7 33,165.9 
 Hamburg A 38,803.0 42,127.7 
 Darmstadt A 31,967.6 34,525.7 
 Gießen A 20,703.2 22,058.0 
 Kassel A 22,163.8 23,517.7 
 Mecklenburg-Vorpommern A 14,895.2 16,101.6 
 Braunschweig A 21,656.4 24,617.2 
 Hannover A 23,894.8 25,124.4 
 Lüneburg A 18,406.3 18,220.3 
 Weser-Ems A 20,468.5 20,909.6 
 Düsseldorf A 26,003.6 28,126.1 
 Köln A 25,922.2 26,800.1 
 Münster A 20,025.4 20,362.5 
 Detmold A 23,233.0 24,483.8 
 Arnsberg A 21,728.2 23,143.3 
 Koblenz A 20,073.0 20,777.9 
 Trier A 19,256.3 19,817.4 

 Rheinhessen-Pfalz A 22,798.0 24,366.1 
 Saarland A 21,869.4 22,475.9 
 Chemnitz A 14,053.4 15,303.1 
 Dresden B 15,372.8 16,627.9 
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 Leipzig A 17,014.7 17,415.1 
 Dessau A 13,457.5 14,892.2 
 Halle A 14,823.6 16,245.8 
 Magdeburg A 13,877.9 16,043.1 
 Schleswig-Holstein A 21,999.8 22,323.0 
 Thüringen A 14,136.0 16,148.1 
     
Greece Anatoliki Makedonia, Thraki B 7,249.6 9,407.6 
 Kentriki Makedonia B 8,398.2 11,701.3 
 Dytiki Makedonia B 8,215.2 11,550.7 
 Thessalia B 7,444.3 10,574.1 
 Ipeiros B 5,611.0 8,112.1 
 Ionia Nisia B 7,326.6 10,193.0 
 Dytiki Ellada B 6,873.3 8,799.1 
 Sterea Ellada B 10,790.6 13,158.8 
 Peloponnisos B 6,751.8 9,933.8 
 Attiki B 9,876.4 13,287.0 
 Voreio Aigaio B 7,677.0 11,297.1 
 Notio Aigaio B 9,642.3 13,742.3 
 Kriti B 8,497.5 11,389.6 
     
Hungary Közép-Magyarország B 2,990.3 4,975.5 
 Közép-Dunántúl B 4,769.4 7,540.8 
 Nyugat-Dunántúl B 3,402.1 5,641.5 
 Dél-Dunántúl B 2,697.3 3,706.2 
 Észak-Magyarország B 2,404.5 3,198.6 
 Észak-Alföld B 2,355.7 3,142.2 
 Dél-Alföld B 2,748.3 3,559.9 
     
Ireland Border, Midland and Western A 10,679.7 19,710.9 
 Southern and Eastern A 15,366.9 29,733.5 
     
Italy Piemonte A 17,221.0 23,634.5 
 Valle d'Aosta A 19,790.3 24,340.9 
 Liguria A 15,127.6 21,360.3 
 Lombardia A 19,490.3 26,588.9 
 Trentino-Alto Adige A 19,439.7 26,941.0 
 Veneto A 17,258.8 23,526.1 
 Friuli-Venezia Giulia A 16,839.8 22,559.6 
 Emilia-Romagna A 18,771.9 25,522.6 
 Toscana A 15,949.3 22,441.9 
 Umbria A 14,388.1 19,883.2 
 Marche A 14,603.1 20,173.3 
 Lazio A 16,579.7 22,312.2 
 Abruzzo A 12,499.7 16,543.4 
 Molise A 10,962.9 15,573.9 
 Campania A 9,252.9 12,907.7 
 Puglia B 9,446.9 13,270.3 
 Basilicata A 9,975.3 14,510.6 
 Calabria B 8,671.0 12,285.5 
 Sicilia B 9,327.9 12,935.1 
 Sardegna A 10,756.9 14,926.1 
     
Latvia Latvia B 1,359.4 3,276.7 
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Lithuania Lithuania B 1,268.4 3,484.9 
     
Luxembourg Luxembourg A 33,481.1 47,199.5 
     
The Netherlands Groningen A 24,380.6 28,263.6 
 Friesland A 17,123.1 20,794.3 
 Drenthe A 17,212.5 19,986.2 
 Overijssel A 17,631.0 21,471.8 
 Gelderland A 18,009.3 21,969.3 
 Flevoland A 15,647.8 18,170.2 
 Utrecht A 24,502.0 31,900.2 
 Noord-Holland A 23,639.4 29,608.6 
 Zuid-Holland A 21,395.6 26,310.2 
 Zeeland A 19,867.7 22,172.6 
 Noord-Brabant A 20,004.7 25,018.1 
 Limburg (NL) A 17,968.4 22,198.0 
     
Poland Dolnoslaskie B 2,617.8 4,571.8 
 Kujawsko-Pomorskie B 2,507.5 3,965.1 
 Lubelskie B 1,940.9 3,030.3 
 Lubuskie B 2,475.4 3,967.0 
 Lódzkie B 2,298.5 3,922.7 
 Malopolskie B 2,229.0 3,948.4 
 Mazowieckie B 3,135.4 6,704.2 
 Opolskie B 2,484.9 3,778.9 
 Podkarpackie B 1,950.1 3,145.5 
 Podlaskie B 1,908.9 3,286.7 
 Pomorskie B 2,526.9 4,446.9 
 Slaskie B 3,098.5 4,867.4 
 Swietokrzyskie B 2,000.1 3,460.0 
 Warminsko-Mazurskie B 2,007.9 3,295.9 
 Wielkopolskie B 2,479.0 4,715.3 
 Zachodniopomorskie B 2,591.0 4,363.3 
     
Portugal Norte B 6,966.9 9,259.9 
 Centro (P) B 6,737.6 8,959.1 
 Lisboa e Vale do Tejo B 10,719.4 15,023.7 
 Alentejo B 6,993.3 9,006.2 
 Algarve B 8,474.4 10,908.1 
     
Romania Nord-Est B 956.1 1,250.9 
 Sud-Est B 1,176.2 1,592.1 
 Sud B 1,139.5 1,472.0 
 Sud-Vest B 1,146.5 1,512.8 
 Vest B 1,298.9 1,846.0 
 Nord-Vest B 1,122.5 1,664.4 
 Centru B 1,286.0 1,910.6 
 Bucuresti B 1,631.8 3,698.9 
     
Slovenia Slovenia A 7,214.8 9,815.0 
     
Slovak Republic Bratislavský kraj B 5,443.2 8,426.4 
 Západné Slovensko B 2,562.6 3,669.0 
 Stredné Slovensko B 2,354.1 3,329.2 
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 Východné Slovensko B 2,166.1 3,050.8 
     
Spain Galicia B 9,210.2 12,010.6 
 Principado de Asturias A 10,043.4 13,155.9 
 Cantabria A 10,595.3 14,900.5 
 País Vasco A 13,599.2 18,836.2 
 Comunidad Foral de Navarra A 14,447.6 19,546.0 
 La Rioja A 13,082.2 16,929.8 
 Aragón A 12,355.1 16,316.0 
 Comunidad de Madrid A 14,997.4 20,411.8 
 Castilla y León A 10,858.2 14,089.0 
 Castilla-la Mancha  A 9,349.4 12,391.0 
 Extremadura B 7,189.3 9,838.3 
 Cataluña A 13,922.5 18,468.3 
 Comunidad Valenciana A 10,814.5 14,705.2 
 Islas Baleares A 14,151.8 18,249.0 
 Andalucia B 8,454.5 11,353.4 
 Región de Murcia A 9,506.6 12,749.8 
     
Sweden Stockholm A 26,281.1 40,454.1 
 Östra Mellansverige A 19,592.8 25,164.8 
 Sydsverige A 19,572.0 27,095.6 
 Norra Mellansverige A 20,855.4 25,038.4 
 Mellersta Norrland A 22,031.1 26,716.1 
 Övre Norrland A 21,423.1 25,309.2 
 Småland med öarna A 20,476.9 26,724.7 
 Västsverige A 20,572.4 27,871.3 
     
UK Tees Valley & Durham A 12,161.9 19,779.5 
 Northumberland & Tyne & Wear A 12,344.7 20,429.0 
 Cumbria A 14,999.7 23,681.9 
 Cheshire A 17,136.5 29,756.7 
 Greater Manchester A 13,367.7 23,048.0 
 Lancashire A 12,821.5 21,095.1 
 Merseyside A 10,506.5 18,263.3 
 East Riding & North Lincolnshire A 14,123.8 24,609.3 
 North Yorkshire A 13,874.6 24,503.4 
 South Yorkshire A 10,822.6 19,447.9 
 West Yorkshire A 13,669.7 23,807.5 
 Derbyshire & Nottinghamshire A 13,177.3 23,382.0 

 Leicestershire, Rutland & 
Northamptonshire A 15,275.5 26,690.4 

 Lincolnshire A 12,591.2 22,059.3 

 Herefordshire, Worcestershire & 
Warwick A 14,226.3 25,289.8 

 Shropshire & Staffordshire A 12,461.1 22,393.8 
 West Midlands A 14,274.4 24,151.0 
 East Anglia A 15,833.4 28,414.8 
 Bedfordshire & Hertfordshire A 15,212.5 27,831.5 
 Essex A 13,231.9 24,358.2 
 Inner London A 35,279.9 62,788.2 
 Outer London A 12,599.4 22,754.4 

 Berkshire, Buckinghamshire & 
Oxfordshire A 18,411.4 33,957.4 

 Surrey, East & West Sussex A 14,476.3 27,403.8 
 Hampshire & Isle of Wight A 14,682.6 28,432.7 
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 Kent A 14,054.3 24,380.7 

 Gloucestershire, Wiltshire & N. 
Somerset A 15,848.5 27,311.1 

 Dorset & Somerset A 12,936.5 22,612.6 
 Cornwall & Isles of Scilly A 9,443.8 16,898.0 
 Devon A 12,174.0 20,595.4 
 West Wales & The Valleys A 10,720.4 18,397.2 
 East Wales A 15,450.8 25,433.2 
 North Eastern Scotland A 19,820.5 31,983.1 
 Eastern Scotland A 15,574.4 26,084.2 
 South Western Scotland A 14,167.8 24,097.6 
 Highlands and Islands A 11,872.0 19,606.6 
 Northern Ireland A 12,066.0 20,223.9 
     

 
 




