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Abstract

This paper aims to derive optimal representations of land use patterns based on novel statistical

techniques. In order to do so, several cross-sectionnal logistic regression models are compared by

studying land use change drivers in Belgium. It is shown that a purely spatial logistic regression

model gives the best statistical fit. Based on this model and on an iterative procedure using Bayes’

theorem, a set of land use suitability maps are developed at two time steps. These can serve as a

basis for the development of a new land use allocation procedure to downscale aggregated land use

data. The method’s simplicity as well as its low data requirements (only land use datasets are used)

makes it easily replicable allowing application over a wide geographic area. An example is shown

using the CORINE land cover dataset to downscale land use scenarios for a small area in Belgium.

The results from the multinomial logistic regression as well as from the iterative procedure based on

Bayes’ theorem are conclusive with the resulting land use maps giving appropriate representation

of land use patterns despite a tendency to further aggregate existing patterns. The method also

proved useful in removing potential artificial border effects, which often arise when downscaling

adjacent land use units. The resulting suitability maps could be used for a variety of applications

ranging from soil science to biogeographical studies.
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1 Introduction

Empirical analyses of land use patterns have previously been used for two distinct objectives. The first

is to analyse a range of variables (the so-called ’drivers’ of land use change) in order to identify which

are important in understanding and explaining land use patterns. This is a way of linking patterns

to processes responsible for their development. Studies by Serneels and Lambin (2001), Veldkamp and

Fresco (1997) and Verburg et al. (2004a) have all pursued such a goal. A second objective is to obtain

the statistically optimal representation of actual or future land use patterns based on appropriate

suitability maps. These maps do not necessarily have strong explanatory power because their goal is to

provide adequate visualization of land use patterns rather than explaining them. The resulting maps

are usually created as a step towards further analysis of, for example, the effect of land use change on

biogeography (Peppler-lisbach, 2003), hydrology (Sullivan et al., 1995) or soil science (Lettens et al.,

2004). For these applications, there is greater concerns for the quality of the resulting map rather than

for the underlying causal relationships that explain the observed land use patterns.

Verburg et al. (2004b) state that as land use is the result of multiple processes acting over different

scales, there is a need for models to integrate different scales of analysis, especially if their aim is

to model land use change over a wide study area. However, most existing models only consider a

single scale. An exception to the rule are the regional level integrated simulation models Briassoulis

(2000) which are, by definition, multi-scalar. For example, the CLUE (Conversion of Land Use and its

Effects) model (Veldkamp and Fresco, 1996), the ATEAM (Advanced Terrestrial Ecosystem Analysis

and Modelling) modelling framework (Rounsevell et al., 2005a) and the Environment Explorer cellular

automata (CA) based model (Engelen, 2002) all have three distinct spatial levels of analysis. It seems

that providing a pan European finer resolution land use change model could be useful for various

purposes. For example, land use patterns have been shown to affect numerous ecological processes

(Parker and Meretsky, 2004). Since land use is a decisive factor in modelling community and species

distribution, it is nowadays also being integrated in ecological modelling approaches (Peppler-lisbach,

2003). Animal ecologists want to know precisely where the different changes in land use will occur.

This is especially important for migratory bird species whose population dynamics can be strongly

influenced by land use change over wide areas (Gauthier et al., 2005). Downscaling is also essential to

better assess the land use change impacts on biodiverisity of natural areas, which depend not only on

the quantity but also the spatial configuration of natural areas, determining the relative connectivity

or isolation of species and habitat (Wimberly and Ohmann, 2004). Soil scientists study changes in soil

organic carbon stocks which directly depend on land use (Lettens et al., 2004).

A simple land use allocation procedure disaggregating coarse resolution land use data would be

useful in such studies. Therefore, the main objective of this paper is to set the basis for a statistically

consistent downscaling procedure based on: 1) logistic regression models to generate maps of probability
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of land use presence based on European wide raster land use datasets and 2) a methodology to update

these probability maps using Bayes’ theorem and the ATEAM land use change scenarios (Rounsevell

et al., 2005a). The resulting maps can then be used to downscale these land use scenario datasets.

Whilst the work presented here is based on an application that uses land use change scenarios, the

methodology is appropriate to the downscaling of any type of aggregated land use data, e.g. for

administrative units.

2 Context of the study

2.1 land use drivers, spatial autocorrelation and neighbourhoods

Broadly speaking, two main types of variables are used within empirical land use/land use change

models, i.e: the non-neighbourhood based variables and the neighbourhood-based variables. While

the former category is included in virtually all land use studies, only a limited number explicitly deal

with neighbourhood effects and spatial autocorrelation. Neighbourhood effects, reflecting centripetal

forces, are known to have a role in the spatial structuring of land use and the landscape (Verburg et al.,

2004c; White and Engelen, 1993). When regression is performed on spatial data, it is likely that spatial

autocorrelation will remain in the residuals (Anselin, 2002). This will occur unless the regression is

performed on a non-autocorrelated data sample , e.g. Serneels and Lambin (2001) or Peppler-lisbach

(2003), but this results in a loss of information. Alternatively, in spatial models, a part of the variance

can be explained by neighbouring values (Overmars et al., 2003).

2.2 logistic regression in land use modelling

Binomial multiple logistic regression (MLR) has been widely used in the field of land use and land

use change modelling to quantify the relationships between driving factors and land use (change)

patterns and to derive land use suitability maps (Veldkamp and Fresco, 1996; Mertens and Lambin,

1997; Hilferink and Rietveld, 1998; Serneels and Lambin, 2001; Peppler-lisbach, 2003; Verburg et al.,

2002). However, it is a time consuming process that requires the acquisition and treatment of a large

number of datasets. These are not always available, a fortiori when the extent of the study area is

as large as, for example, Europe. In this case, national or even regional datasets would have to be

used in order to account for regional variations in the relationships between land use and its drivers.

Using only neighbourhood-based variables to build suitability maps allows other variables or drivers

to be ignored. Indeed, the fact that models such as CLUE (Veldkamp and Fresco, 1996), CLUE-S

(Verburg et al., 2002), the Land Use Scanner (Schotten et al., 2001), and most CA type models are

’data-hungry’ and are usually unable to simulate land use dynamics in areas without a land use change
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history, is considered to be their main drawback (Verburg et al., 2002). In contrast, neighbourhood

based variables can be derived using a single land use dataset for the whole region studied. This makes

the statistical basis of the land use allocation procedure simple and easily replicable. Considering this,

a hypothesis to be tested in this study is that using neighbourhood variables alone will produce the

best statistical representation of land use patterns. This hypothesis will be verified through a series

of binomial regression models: 1) a model including only non-neighbourhood based land use variables;

2) a mixed model including both neighbourhood based and non-neighbourhood based variables; and

3) a purely autoregressive model including solely neighbourhood-based variables. The goodness of fit

of these models will be compared. If, as hypothesized, the purely spatial model gives the best fit, a

multinomial logit model will be used instead of the binomial logit model. Because they treat each

land use individually, binomial MLR can provide insight into the driving factors explaining land use

patterns. However, multinomial logistic regression models are probably better if the aim is to obtain

the best fitting probability maps of land use presence. This is because it considers each land use as

a possible alternative amongst the whole set of land use categories. Indeed, the multinomial model

extends the logit to more than two states. Instead of the simple (0,1) dichotomy, there are k possible

states with index i = 1, 2, ..., k (Cramer, 1991). In the present study, k represents the different land

use categories. Multinomial logistic regression models generate consistent probability maps of land use

presence; the sum of probabilities for a given pixel being equal to 1, which is not the case in binomial

MLR in which probabilities are computed for each land use independently of other land uses. This

allows discrimination between land uses on a non-biased basis.

Some recent work has incorporated spatial dependencies into qualitative dependent variables and

discrete choice models. Augustin et al. (2001) used a spatial multinomial logit model to explore vegeta-

tion dynamics. Bhat and Guo (2003) applied this framework to the field of residential modelling while

Ben-Akiva and Lerman (1985) and Mohammadian and Kanaroglou (2003) applied it to transportation

planning. However, spatial multinomial logistic modelling has hardly been used in the field of land

use (change) modelling. McMillen (2001) applied this framework to model land use in an urban fringe

area of Chicago considering three land use classes. These included neighbourhood variables such as the

characteristics of the quarter-section in which properties were located.

3 Data and methods

3.1 overview

The analysis presented here consists of three main parts:

1. Deriving the logistic regression model that gives the best statistical fit by testing several models
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in a cross-sectional analysis of land use drivers in Belgium.

2. Using this model to derive baseline probability maps of land use presence.

3. Updating these probability maps with an iterative procedure based on the Bayes’ theorem and

on land use change scenario data.

The PELCOM (Pan European Land Use and Land Cover Monitoring) (Mücher et al., 2000) and

CORINE (Coordinated Information on the European Environment) land cover map (European Com-

mission, 1993) will serve as baseline dataset to derive suitability maps of land use presence while

ATEAM scenario data (Rounsevell et al., 2005b; Erhard et al., 2005) will serve as quantitative con-

straints to update the probability maps.

3.2 data

3.2.1 dependent variable: land use categories

There are very few European wide land use datasets. The two main datasets are the PELCOM land

cover dataset (Mücher et al., 2000) and the CORINE land cover 1 dataset (European Commission,

1993). Both were originally derived from satellite data. PELCOM is a geographical map that covers

the whole of Europe at a spatial resolution of 1.1 km x 1.1 km. It was obtained from earth observation

satellite images around 1996 and was validated using the CORINE land cover dataset. CORINE exists

in several versions. It was first made available as a grid database at a spatial resolution of 250m,

aggregated from the original vector data at a scale of 1:100000, limited to the EU15 countries and

the year 1990. Despite CORINE’s finer spatial resolution and generally assumed better quality over

PELCOM (see e.g. Schmit et al., 2005), the PELCOM dataset was used for the cross-sectional analysis

of land use drivers. This was done because a) the computation time is greatly reduced as there are

over 19 times fewer PELCOM cells (24932) than CORINE cells (489401) in Belgium and b) the spatial

resolution of the independent variables presented in table 1 is always coarser than that of CORINE. The

following PELCOM land use/land cover classes are present in Belgium: deciduous forest, coniferous

forests, mixed forests, cropland, grassland, built-up (urbanized) areas and inland water (ignored in this

study). The three forest classes were aggregated into a single class, so the regression analyses were

performed on four land use classes: built-up, cropland, grassland and forests. It should be noted that,

at this resolution, the classification of satellite images allows only the dominant land use of each cell to

be represented.

At the time the study was undertaken, no updated version of the PELCOM raster dataset was

available. Therefore, a cross sectional analysis of the actual land use pattern was implemented using

1Although Land Use and Land Cover are two different concepts, they will be used interchangeably in this study to

avoid over-complication
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the 1996 version. A well-known limitation to this type of analysis is the uncertainty with respect to

the causality of the supposed relationships between land use drivers and land use patterns (Verburg

et al., 2004b). However, the primary goal of the present study is not to determine such relationships,

but rather to find the best fit statistical model to derive land use suitability maps.

3.2.2 independent variables: non-neighbourhood based versus neighbourhood based.

Table 1 summarizes the data used in this analysis. The selection of independent variables was based

on a literature review and expert judgment. Most variables are quantitative and continuous, but some

are categorical or binary. The combination of different types of variables is not a problem in logistic

regression modelling, however, the independence of variables can be. For example, over long time-

scales, accessibility and urban expansion are closely linked, with complex cause-effect relationships.

More roads can create urbanization, which in turn, can generate new roads. This excludes variables

such as distance to the transport network from the analysis. The same type of reasoning makes

other socio-economic factors, such as population pressure and labour availability, equally unsuitable

for explaining the land use patterns within a cross-sectional analysis. In practice, many factors that

are commonly used to explain land use change patterns are endogenous to the processes studied over

long time scales (Verburg et al., 2004b) and this can lead to biased regression coefficients (Anselin and

Kelejian, 1997; Gujarati, 1995).

A simple way of building a neighbourhood variable is to take the percentage of the land use itself

within the 8 immediately surrounding cells (or less for edge located cells), that is, without taking into

account the possible influence of cells that are located further away. Neighbourhood variables that

take account of effects over larger distances were also derived using the enrichment factor developed by

Verburg et al. (2004c) and by looking at spatial autocorrelation in the regressions’ residuals.

3.2.3 land use change scenarios

The ATEAM project developed land use scenario maps of Europe for the years 2020, 2050 and 2080

(Rounsevell et al., 2005a; Erhard et al., 2005). The ATEAM land use maps give land use shares (in

percent) for each cell over a 10’ longitude/latitude grid. This resolution does not allow the identification

of land use change effects at the landscape level and is insufficient to establish a link with local case-

studies (Verburg et al., 2005). The land use classes are built-up, cropland, grassland, forest, biofuels

(liquid, non-woody and woody) and surplus (i.e. abandoned land). The latter two are absent from the

baseline land cover maps (i.e. PELCOM and CORINE). To match the baseline land cover categories,

liquid biofuels (e.g. oilseed rape) were grouped with cropland while non-woody and woody biofuels

(e.g. willow plantations) were grouped with forest.
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Table 1: Independent Variables

Variable Type Description Source

Biophysical Variables

Slope Continuous 1km resolution. The slope data set describes the max-

imum change in the elevations between each cell and

its eight neihbours. The slope is expressed in integer

degrees of slope between 0 and 90

USGS - Hydro1k derivative el-

evation database

Elevation Continuous 1km resolution DEM of Europe. Units: meters USGS - Hydro1k derivative el-

evation database

Soil characteristics

Silt content of topsoil Continuous Silt content (%) of the 30 first centimetres of the soil

corresponding to the root zone, which is important for

agricultural land uses. Mean value per soil association

Aardewerk database (Van Or-

shoven et al., 1993) + digital

version of the soil association

map of Belgium (Tavernier and

Marechal, 1962)

Sand content of topsoil Continuous Sand content (%) of the 30 first centimetres of the soil

corresponding to the root zone, which is important for

agricultural land uses. Mean value per soil association

Ditto

Clay content of topsoil Continuous Clay content (%) of the 30 first centimetres of the soil

corresponding to the root zone, which is important for

agricultural land uses. Mean value per soil association

Ditto

Soil depth Binary Soil associations with a B-textural horizon are defined

as deep (1) while associations without a B-textural

horizon were classified as not deep (0)

Digital version of the soil asso-

ciation map of Belgium (Tav-

ernier and Marechal, 1962)

Wetness index Ordinal Soil associations were defined as ’dry’, ’normal’ and

’wet’

Climate Variables

Temperature Continuous Yearly mean temperature between 1960 and 1997 in-

terpolated to the PELCOM grid (Mücher et al., 2000)

(Mitchell et al., 2004)

Temperature inxex Continuous Inxex representing the cumulated growth potential for

winter cereals based on criteria of the FAO

(Mitchell et al., 2004)

Precipitation Continuous Yearly mean temperature between 1960 and 1997 in-

terpolated to the PELCOM grid (Mücher et al., 2000)

(Mitchell et al., 2004)

Accessibility variables

Distance to open water Continuous Minimum distance to the coast or to the nearest main

river

ESRI data

Distance to urban

cores

Continuous Minimum distance to the nearest historic urban centre

- base on the distance to the core (in terms of popula-

tion density) of the 53 communes with high functional

urbanisation

Merenne-Schoumaker et al.

(1998)

Neighbourhood variables

Percentage of the sur-

rounding land use

Continuous cf. text Mücher et al. (2000) and Euro-

pean Commission (1993)
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3.3 logistic regression

The general approach followed here was to first perform standard binomial logistic regressions, assuming

that non-neighbourhood related variables would lead to a good statistical representation of the baseline

land use pattern. For such a logistic regression the model form is:

logit(p(Y = 1)) = α + βx (1)

where Y is the dependent variable, x is the vector of covariates and α and β are the model para-

meters. This model is suqsequently referred to as the ’purely regressive model ’.

If autocorrelation remains in the residuals, this can either mean that some variables are missing,

and/or that there is a need to include a spatial part in the model. Whilst it is hard to estimate which

variables are missing and perhaps even harder to find the appropriate data, including a spatial variable

is always possible. The model form becomes:

logit(p(Y = 1)) = α + βx + γy (2)

where γy is the neighbourhood variable and associated weights. This model is subsequently referred

to as the ’mixed model ’ (including both neighbourhood and non-neighbourhood variables).

Alternatively, a strictly ’autoregressive model ’ can be developed:

logit(p(Y = 1) = γy (3)

These binomial models will be applied to each of the four PELCOM land use categories (i.e. urban,

cropland, grassland and built-up). If the ’autoregressive model ’ gives the best statistical fit, a multino-

mial model will be used for the reasons described in section 2.2. Since no ancillary data is needed in a

purely autoregressive model, the resolution of the baseline land use dataset is no longer considered to

be a restriction in the choice of baseline land use data. Of course, spatial autocorrelation in land use

patterns is scale dependent (Overmars et al., 2003). At an aggregate level, urban areas are clustered

and have positive autocorrelation (Arai and Akiyama, 2004). However, at the scale of the individual

parcel, negative autocorrelation resulting from negative externalities (e.g. congestion effects) has been

found among urban parcels (Irwin and Geogheghan, 2001; Parker and Meretsky, 2004). For agricultural

land uses, positive externalities result from e.g. economies of scales (Munroe et al., 2001) or imitation

strategies (Rounsevell et al., 2003). Although this has not been verified (due to e.g. lack data rep-

resenting potential land use drivers at appropriate scales), it is assumed that a purely autoregressive

model would also give the best fit at the CORINE resolution.

Therefore, the multinomial model was applied to the CORINE land cover dataset (250m resolution)

as well as the PELCOM dataset (1.1km). This gain in spatial resolution is combined with a gain in
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quality as the official classification accuracy of CORINE is about 87% (European Commission DGXII-

D, 2000) while it ranges from 50.6% to 73.3% (depending on the region) for PELCOM (Mücher et al.,

2000).

The general multinomial logistic regression and the methodology to update the conditional prob-

abilities of land use presence is described in the following sections. A subset of CORINE was chosen

to demonstrate these methods, corresponding to a small area (9 ATEAM cells - about 3000km2) of

Southern Belgium (figure 1). As mentionned before, the various land cover classes present in the area

were reclassified into ’built-up areas’, ’cropland’, ’pastures’, and ’forests’. All minor land cover classes

(< 1% of total area) that did not match any of these categories (e.g. water courses, bare rocks...) were

reclassified as ’others’. This was done mainly for computational purposes and to best correspond to

the ATEAM scenarios of land use change.

Multinomial logistic regression models belong to the category of discrete choice models. This cat-

egory of models originates from the economic sciences and are based on random utility theory, which

assumes that the decision-maker’s preference for an alternative is captured by the value of an index,

called utility. A decision-maker selects the alternative from the choice set that has the highest utility

value (Mohammadian and Kanaroglou, 2003). In the case of land use modelling, a cell (or pixel) can be

conceptualised as an aggregated group of decision makers. The general form of the multinomial logit

model can be written as:

pij =
exp(µVij)∑

k∈Ck
exp(µVkj)

k ∈ Ck (4)

where pij is the probability that a CORINE cell j would take land use i, rather than any other land

use k in the choice set Ck, conditional on knowing the utility function Vkj for all k land uses in the

choice set (µ is non-negative scale parameter). In the case of a purely spatial logit model, the utility

function can be written as:

Vkj =
S∑

s=1

ρijsyis (5)

where ρ is the weight factor given to the S neighbours and yis takes value 1 if cell j is occupied by

land use i, 0 otherwise. For a more complete discussion about discrete choice modelling principles and

methods, see Ben-Akiva and Lerman (1985).

A Multinomial Discrete Choice (MDC) procedure was implemented using the SAS software. The

dependent variable ’decision’ takes value 1 when a specific alternative is chosen, otherwise it takes

value 0. Each cell is allowed to choose one and only one of the five possible alternatives (land use

categories - the ’others’ category were included for completeness). In order to differentiate between

land use categories, a set of four dummy independent variables xi (taking the value 1 when alternative

i is chosen, 0 otherwise) were added to the model together with the neighbourhood variable.
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Figure 1:

Study area - 9 ATEAM cells

3.4 a method to update the probabilities of land use presence

Assume that there are k potentially observable land use categories within any CORINE cell over the

study area, these categories being denoted as c1, . . . , ck. Without loss of generality, let us consider that

for any given CORINE cell, the 8 immediate neighbours have been taken into account when estimating

the probability of observing each possible category for the central cell at an initial time step t (see Figure

2). If we denote Nα as a specific configuration of these neighbours categories (among the set of k8

possible configuration of categories), the multinomial logit procedure provides us with the conditional

probabilities p(ci|Nα) (where i = 1, . . . , k), i.e. the probabilities of each possible category at the central

cell given the neighbours categories configuration Nα. Moreover, from the CORINE database, we are

also able to obtain good estimates of the global theoretical frequencies (marginal probabilities) for each

land use, that will be denoted as p(ci). From Bayes’ theorem, we can also write that

p(ci|Nα) =
p(Nα|ci)p(ci)∑k

j=1 p(Nα|cj)p(cj)
=

1

A
p(Nα|ci)p(ci) (6)
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where the denominator plays the role of a normalization constant, so that we always have
∑

i p(ci|Nα) =

1. Based on this result we can state that, up to a multiplicative constant, the conditional probabilities

can be computed as the product of marginal probabilities p(ci) – that may change according to possible

global modifications of the land use proportions over time – and conditional probabilities p(Nα|ci) that

characterize the local spatial organization of the various land uses, assumed to be largely invariant over

time. As we have explicitly specified the p(ci|Nα) values from the multinomial logit model as well as

the p(ci) values from the whole CORINE database, these various p(Nα|ci) values can be computed

from eq. (6), with

p(Nα|ci) = A
p(ci|Nα)

p(ci)
(7)

This way of presenting the problem is particularly useful as it allows us to take into account the

effect of the various ATEAM scenarios. Indeed, let us consider that at time t′ after t the theoretical

proportions of land use become equal to new values p′(c1), . . . , p
′(ck). Assuming that the p(Nα|ci)

values remain unchanged when moving from time t to time t′, rewriting eq. (7) for this time instant t′

gives us the result

A
p(ci|Nα)

p(ci)
= p(Nα|ci) = A′

p′(ci|Nα)

p′(ci)
⇐⇒ p′(ci|Nα) ∝

p′(ci)

p(ci)
p(ci|Nα) (8)

subject to the constraint
∑

i p′(ci|Nα) = 1. The last relation in eq. (8) is thus an updating rule for

the computation of new conditional probabilities p′(ci|Nα) when the marginal probabilities are changed

from the set of values {p(c1), . . . , p(ck)} that apply at time t to the new set of values {p′(c1), . . . , p
′(ck)}

that apply later at time t′. In practice, these new marginal probabilities are the land use frequencies

of the ATEAM cell in which the CORINE cell is included (see Figure 1).

In summary, for all of the n CORINE cells that belong to the same ATEAM cell :

1. for each land use ci, the marginal probability p(ci) at the initial time step t is considered to be

identical for all CORINE cells and can be estimated from the corresponding observed frequency

computed from the whole CORINE database (or solely from the CORINE cells that belong to

this ATEAM cell if proportions appear to vary in a significant way from one ATEAM cell to

another);

2. for each land use ci, the marginal probability p′(ci) at time t′ is considered to be identical too

for all CORINE cells and is considered to be equal to the corresponding land use frequency f ′

i

specified for this ATEAM cell;

3. for each CORINE cell, the updated conditional probabilities p′(ci|Nα) (i = 1, . . . , k) are computed

(up to a normalization constant) using eq. (8), where the initial conditional probabilities p(ci|Nα)

are coming from the previously fitted logit multinomial model.
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4. for each CORINE cell, the outputs of eq. (8) are normalized so that
∑

i p′(ci|Nα) = 1, as required

for a valid probability distribution.

Though the above procedure provides us with a simple method for computing new conditional prob-

abilities for any CORINE cell included within a given ATEAM cell, there is still a consistency issue. The

marginal probabilities as directly specified by the corresponding ATEAM frequencies {f ′

1, . . . , f
′

k} may

differ somewhat from the marginal probabilities {p′(c1), . . . , p
′(ck)} that can be estimated afterwards

from the new set of conditional probabilities using the formula

p̂ ′(ci) =
1

n

n∑

j=1

p′(ci|N[j]) (9)

where p′(ci|N[j]) refers to the estimated conditional probability of category ci for the jth CORINE

cell. This consistency problem is an indirect consequence of the normalization step 4 that involves

a different normalization constant for each CORINE cell in general. Indeed, using eq. (9) with the

ouputs of Step 3 will lead to p̂ ′(ci) values that are identical to the specified fi ATEAM frequencies,

but these outputs do not provide valid distributions (as in general these probabilities will not sum up

to one for each CORINE cell), whereas the ouputs of Step 4 will respect this validity condition but

using eq. (9) will then no longer garantee that p̂ ′(ci) = fi in general. Stated in other words, the above

procedure does not allow the user to derive conditional probability values that respect at the same time

the validity conditions
∑

i p′(ci|Nα) = 1 and the specified frequencies fi for the corresponding ATEAM

cell.

A way to avoid this consistency problem is to use an iterative procedure that aims at modifying the

set of conditional probabilities in such a way that both conditions can be fulfilled at the same time.

Let us rearrange the set of all conditional probabilities from Step 4 in a k × n two-dimensional table

T [0], such that

T [0] =





p′(c1|N[1]) p′(c1|N[2]) · · · p′(c1|N[n])

p′(c2|N[1]) p′(c2|N[2]) · · · p′(c2|N[n])
...

...
. . .

...

p′(ck|N[1]) p′(ck|N[2]) · · · p′(ck|N[n])




(10)

where for the sum along the columns of T [0] we have

k∑

i=1

T
[0]
ij =

k∑

i=1

p′(ci|N[j]) = 1 ∀j = 1, . . . , n (11)

whereas for the sum along the lines we have

n∑

j=1

T
[0]
ij =

n∑

j=1

p′(ci|N[j]) = np̂ ′(ci) ∀i = 1, . . . , n (12)
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with p̂ ′(ci) 6= fi in general. Let us now define a new table T [1] obtained using the relations

Sij = T
[0]
ij

fi
∑n

j=1 T
[0]
ij

∀i, j so that
∑

j Sij = fi ∀i

T
[1]
ij = Sij

1
∑k

i=1 Sij

∀i, j so that
∑

i T
[1]
ij = 1 ∀j

(13)

Clearly, applying such a transformation does not modify the sum of each line and we still have
∑

j T
[1]
ij 6= nfi in general. However, it can be proved that after a repeated use of eq. (13) in order

to get T [2], T [3], . . ., we will obtain

n∑

j=1

T
[∞]
ij = nfi ∀i = 1, . . . , k

which is the result that was sought. In practice, convergence is relatively fast so that few iterations

are needed for getting p̂ ′(ci) ≃ fi. This algorithm is a straightforward variation around the well-

known iterative rescaling procedure, widely applied in statistics for the fitting of a multidimensional

contingency table subject to contraints on its marginal values.

When downscaling aggregated land use data from adjacent land use units, it is likely that the

borders between these units remain visible at the finer resolution. In the present case, it makes no

sense to assume that two adjacent CORINE cells belonging to two different ATEAM cells would have

completely different sets of marginal probabilities (i.e. different sets of land use ratios at the ATEAM

resolution). However, the marginal probabilities values from the ATEAM cells constrain the updating

of the conditional probabilities (see eqn. 5). Therefore, the original marginal probabilities at both

time steps t (given by CORINE) and t′ (given by the ATEAM scenarios) have to be recomputed for

all CORINE cells using inverse distance weighted based smoothing algorithms within the iterative

procedure.

This iterative procedure giving new conditional probabilities was encoded and applied using the

MATLAB software. To avoid confusion, the ’others’ category from the CORINE map (i.e. ’fixed

land covers’ such as water or bare rocks) and the ’surplus’ categories (i.e. land that no longer has an

economic value and becomes abandoned) from the ATEAM scenarios were excluded from the vectors

of marginal probabilities at all time steps.

4 Results

4.1 binomial logistic regression

For all of the land uses studied, the approaches based on the enrichment factor or on the regression’s

residuals were not significantly better than the regressions that included a simple Moore neighbourhood

variable. On the contrary, they tended to give slightly poorer fits. For more details about these various
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neighbourhood sizes and models the reader is referred to Dendoncker et al. (2005). Therefore, the

spatial variable based only on the Moore neighbourhood was retained. Table 2 summarizes the results

of the different models for each land use studied. Results are compared using the Receiver Operating

Characteristic (ROC) (Pontius and Schneider, 2000) and a classification table giving correctly classified

cells at a 0.5 probability threshold. By itself, a classification table can only give a relative indication

of how well the model performs, but it remains a very useful tool when comparing the performance of

different models. The results are discussed at length by Dendoncker et al. (2005). A general conclusion

that can be drawn is that stricly autoregressive models always outperform purely regressive models

and give similar fit to the mixed models. Therefore, it can be concluded that a purely autoregressive

approach is entirely appropriate in order to obtain the best statistical model of land use distribution

at a relatively coarse resolution in Belgium.

Table 2: binomial logistic regression

Land use goodness of fit non-spatial mixed spatial

BUILT-UP
ROC stat 0.75 0.89 0.88

% correct 88.7 91.6 91.6

CROPLAND
ROC stat 0.83 0.94 0.94

% correct 73.0 86.1 86.0

GRASSLANDa
ROC stat 0.72 0.94 0.94

% correct 81.7 89.5 88.3

FOREST
ROC stat 0.92 0.98 0.98

% correct 88.3 94.2 94.3

a In order to account for differences in management, the dataset was di-

vided in two. The given results of the non-spatial and mixed models

concern the Northern region of Belgium. For more detail see Dendon-

cker et al. (2005). Applying a strictly autoregressive model avoids this

division.

4.2 multinomial autologistic regression

The results of the MDC procedure are summarized in table 3. The general fit of the model is very good

(Mc Fadden’s likelihood ratio index = 0.63) and all variables are highly significant (p value < 0.0001).

This confirms that using solely neighbourhood variables to derive probability maps of land use presence

at the CORINE resolution was appropriate. The associated probability table is of greater importance

for the rest of this study, as the main goal of this model is to derive baseline suitability maps. This set

of probabilities will be the reference database for the updating methodology described in section 3.4.

Table 4 gives the contingency table (also called error or confusion matrix) comparing the original

CORINE data with the predicted land use (i.e. the land use category with the highest probability in

the choice set). The overall accuracy (0.77) and the kappa coefficient (0.63) (Richards and Jia, 1999;
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Pontius, 2000) are both good. To consider the similarity of location and the similarity of quantity

independently, the kappa statistic has been partitioned into ’K-location’ (as defined by Pontius (2000))

and ’K-histo’ (as defined by Hagen (2002)). The former equals 0.65 while the latter equals 0.97. This

suggests that the model predicts quantity with more accuracy than location. Not surprisingly, the

model does not predict the ’others’ category well. This can be explained by the under-representation of

this artificially constructed category and the fact that it mainly consists of linear elements (rivers, i.e.

not clustered) along with some small patches of bare rock. Furthermore, this category is not subject to

change and will be masked when the allocation procedure is applied to real data. It was only included

here for completeness, to have a consistent set of alternatives (ensuring that predicted probabilities

add up to one) and to avoid holes in the gridded dataset. All other land use categories are fairly well

predicted.

A spatial comparison of the CORINE data with the predicted land use is given in figure 2. It clearly

shows that the model tends to further compact existing land use clusters while isolated cells are lost.

This leads to a more aggregated and less fragmented landscape pattern. This is confirmed by some

simple spatial metrics computed with the Patch Analyst extension for Arcview (e.g. mean patch size

of all land use categories - except ’others’ significantly increases while total edge length diminishes).

Moreover, cells located at the fringes between land use clusters are usually poorly predicted (figure 2c).

This is the consequence of using a purely neighbourhood-based regression model. However, Dendoncker

et al. (2005) showed that no other model would give a better fit. One has to remember that this is a

mean map showing the most probable (in a statistical sense) land use pattern but not necessarily the

most realistic one. In fact, whenever a decision is made to represent each cell by one hard categorical

value, there is a loss of information. Real information is contained by the distribution of conditional

probabilities as given by the spatial multinomial logistic regression model. A certain level of uncertainty

is associated therefore with each decision made. In other words, a cell can be mapped as grassland

with conditional probabilities of 0.3 or 0.99 but uncertainty is obviously much lower in the latter case.

However, the uncertainty of prediction is never represented on maps, which would become over-complex

and difficult to read.
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Table 3: The MDC procedure

Discrete Response Profile
LAND USE Frequency Percent
Built-up 4920 15.58
Cropland 16920 53.57
Grassland 2809 8.89
Forest 6737 0.63

Dependent Variable Decision
Number of Observations 31585
Number of Cases 157925
Likelihood Ratio 64260
McFadden’s LRI 0.6321

Parameter Estimates Pr > |t|
dummy1 1.70 < 0.0001
dummy2 1.50 < 0.0001
dummy3 1.53 < 0.0001
dummy4 1.50 < 0.0001
neighbourhood 0.63 < .0.0001

Table 4: contingency table

O
B

S
E

R
V

E
D

PREDICTED
Built-up Cropland Grassland Forest Others Total p(a) 0.77

Built-up 0.09 0.04 0.01 0.01 0.00 0.15 p(max) 0.98
Cropland 0.03 0.46 0.02 0.03 0.00 0.54 p(e) 0.37
Grassland 0.01 0.02 0.05 0.01 0.00 0.09 kappa 0.63
Forest 0.01 0.02 0.01 0.17 0.00 0.21 klocation 0.65
Others 0.00 0.00 0.00 0.00 0.00 0.01 khisto 0.97

0.14 0.55 0.08 0.22 0.01 1 (31585 cells)
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Figure 2:

The MDC procedure - observed vs predicted
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4.3 updated probabilities of land use presence

Figure 3 shows the land use map resulting from the downscaling of the four ATEAM scenarios using the

updated conditional probabilities for the year 2020 (time t′). The land use with the highest predicted

conditional probability is represented. As expected from the baseline probability map resulting from

the multinomial logit procedure (see figure 2), the landscape pattern is more aggregated and less

fragmented. However, no border effects can be seen.

All river cells from the baseline CORINE dataset (see figure 1) have artificially been replaced by

different land use categories, this is not considered to be a problem as the ’others’ (i.e. river and bare

rock) category will be restricted from change in a practical application of the method. Similarly, no

indication is given as to which pixels will be abandoned from commercial management (i.e. the ’surplus’

category from the ATEAM scenarios). However, other studies suggest that for agriculture these are

likely to take place in less favoured areas (Verburg et al., 2005).

The main differences between scenarios that can be observed in figure 3 result from the differences

in the land use frequencies given by the ATEAM scenarios rather than from the probability updating

methodology itself. For example, the A2 and B1 scenarios display very similar land use patterns and

quantities, both preserving most of their grassland cells although, on the whole, European grassland

diminishes much more in A2 (Rounsevell et al., 2005a). In the A1 scenario grassland diminishes mainly

in the Least Favoured Areas (LFA’s) represented by the southern cells in this example. In general

grassland is replaced by ’liquid’ biofuels classified as cropland here. Finally, B2 shows the almost

complete disappearance of grassland and its replacement by ’solid’ biofuels here classified as forest.
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Figure 3:

A1fi 4 scenarios downscaled - 2020

5 Discussion

The main goal of this paper was to establish a statistically sound methodology to downscale aggregate

land use data and to be able to visualize land use patterns from the ATEAM scenarios of land use

change. Results from the spatial binomial regression, the multinomial autologistic regression as well as

from the iterative procedure based on Bayes’ theorem were conclusive. The resulting land use maps

give appropriate representation of the land use pattern despite a tendency to increase clustering and a

fortiori loose part of the initial fragmentation. This is a consequence of using a purely autoregressive

model. However, using neighbourhood variables is considered to be a real advantage as no ancillary

data are needed to derive the statistically based suitability maps. These datasets are often incomplete,

are not always available at adequate resolution or spatial extent, can be of debatable quality or simply

19



do not exist. Thus, finding appropriate datasets to derive optimal variables that represent land use

drivers is always a time and effort consuming process. The methodology developed in this paper is

simpler and quicker to implement. A final advantage of the multinomial logistic regression procedure

is that it allows to discriminate between land uses as complete vectors of conditional probabilities are

derived (i.e. the probabilities of presence for all land use classes within each cell sum to one). The new

CORINE Land Cover raster dataset giving land use in 2000 has just been made available and could

serve as a basis for a quasi validation of the multinomial logit procedure.

The downscaled land use change scenario presented in figure 4 are ’mean’ maps, representing the

most probable (in a statistical sense) but not necessarily the most realistic patterns. In order to derive

such maps, it is necessary to adapt the calculated suitability with decision rules that reflect the assumed

changes in location preferences (Verburg et al., 2005). In addition to the above comments, it should

be noted that downscaling is merely the last step in the multi-scale land use modelling process. The

main differences between land use models (especially in land use quantities) will always arise from

the interpretation of storylines and their translation into quantitative scenarios. Nevertheless, it is

important to use optimal suitability maps to underpin a rule based procedure. Rules need to include

elements such as policy constraints (e.g. designation of protected areas, precise delineation of LFA’s...).

Some conversions should be made impossible (e.g. existing urban and river cells will always remain as

such), others should only be possible after certain time lags. A simple conversion matrix as proposed by

Verburg et al. (2005) would account for this. Finally, some rules could be specific to certain scenarios

and some a posteriori decisions need to be made regarding the location of biofuels and abandonned

land. When this rule based approach is achieved, the resulting land use scenario maps will be useful

for a large set of applications in a range of scientific disciplines. The statistical analysis presented here

was a first step in this direction.
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