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Abstract 

There has been a very large amount of research devoted to the study of chains of 
activities. The initial studies were developed in geography (space and time 
description of human activity, as described by Torsten Hägerstrand and Peter 
Hagget) and in economics (starting with the seminal work of Gary Becker). More 
recently, transportation scholars (see for example the studies of Chandra Bhat or of 
Kay Axhausen) have started to develop sophisticated econometric models to 
describe the chain of activities during the whole day, or the whole week. One 
rationale for this research is the fact that users are increasingly sophisticated and 
spend more and more time on trips other than from home to work. Thus, lengthy 
trips with many stops can now be envisaged (with sometimes one of these stops 
being at the office) which change the structure of travel demand. 

We propose here a complementary avenue of research covering the following 
questions: what are the impacts of the chain of activities on the decisions of the 
firm? The fact that users change their activity patterns does influence the locations 
of the firms (see for example the emergence of large shopping areas near railway 
stations or even inside railway stations and airports), as well as their pricing 
strategies. The questions are: Is the market more or less competitive when trip 
chaining is taken into account? Are human activities more or less concentrated as 
users are more involved in trip chaining? 

Keywords: trip chaining, discrete choice model, general equilibrium model, 
imperfect competition, wage competition.  

 

1 THEMA, Univ de Cergy Pontoise, France, Andre.DePalma@eco.u-cergy.fr 

2 CES – KU Leuven, Belgium, fay.dunkerley@econ.kuleuven.ac.be 

3 CES – KU Leuven, Belgium, stef.proost@econ.kuleuven.ac.be 
 



Trip chaining: who wins, who loses?   2 

Trip chaining: who wins, who loses? 

1. INTRODUCTION 

There has been a considerable amount of research devoted to the study of activity 
patterns. The initial studies were developed in geography with the space-time 
description of human activity advanced by Hägerstrand (1970, 1975) and Haggett 
(1977) and in economics (starting with the seminal work of Gary Becker (1987). More 
recently, transportation scholars have started to develop sophisticated econometric 
models to describe the chain of activities during the whole day of individuals using 
diary survey data (e.g. Axhausen (2002)). Adler and Ben-Akiva (1979) present a model 
for a day non-work travel pattern. Bowman and Ben-Akiva (2001) include work as an 
activity in their discrete choice model system, which can be used for travel forecasting. 
Bhat and Singh (2000) develop a representation of the workday activity-travel pattern, 
in which several activity stops can be made during different periods of the day (sub-
patterns). Golob (2000) develops and tests a household trip generation model, which 
forecasts activity participation, trip chaining and travel time as a function of household 
characteristics and accessibility indices. Kuppam and Pendyala (2001) also use a 
structural equations modelling approach applied to activity based travel survey data 
collected in Washington DC. Bhat et al (2004) focus on multiday activity generation. 

Trip chaining is considered to be a growing phenomenon in travel and activity 
behaviour, as individuals try to reduce the amount of travel time needed to complete 
daily activities, given the limitations of their time budget. In their empirical analysis 
using data from US metropolitan areas, Bhat and Singh (2000) show that stops for 
shopping or socio-recreational activities are most likely to be made during the evening 
commute or later in the evening. Recker et al (2001) examine the effect that efficient 
travel decisions, like trip chaining, can have on the potential to engage in additional 
activities. Applying their numerical model, in which a generalised household cost 
function is minimised subject to time-related and routing constraints, to data from 
Portland, Oregon, they show potential household accessibility improvements with trip 
chaining. Hensher and Reyes (2000) use econometric analysis to look at the potential 
barrier trip-chaining creates to attracting car users to switch to public transport. In the 
field of consumer research, Brooks et al (2004) apply diminishing sensitivity and 
reference point dependence theory to trip chaining and investigate experimentally 
preferences for distance and clustering of stops in the activity chain.  

In this paper we pursue a different avenue of research and examine the effect that trip 
chaining by households has on the pricing and wage decisions of firms. Are firms more 
or less competitive? Our starting point is a theoretical, symmetric model of a city, in 
which households live in the city centre and there is imperfect competition between 
firms located in subcentres (de Palma and Proost 2005). In the original model 
individuals made separate working and shopping trips. Here we relax this assumption 
and allow consumers to shop at the subcentre where they work. The model is first 
briefly described in Section 2 and the short-run equilibrium with trip chaining is then 
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derived and compared to the results of the original model. A small numerical illustration 
is included. In Section 3 we look at the welfare implications of trip chaining and in 
Section 4 conclude.  

2. THEORETICAL FRAMEWORK 

2.1. Model Setting 

The study imperfect competition in a city both with and without congestion has been 
analysed recently for a closed economy by de Palma and Proost (2005). In their model, 
households are constrained to make separate trips for shopping and working, so trip-
chaining is de facto not permitted. In this paper we relax this assumption and allow 
residents to shop at their work location without making a separate journey. In the 
current paper, the model set-up is symmetric and we do not include congestion in order 
to focus solely on the effect trip-chaining has on the price equilibrium. In this section 
we provide a brief description of the model set-up and derive the relevant expressions 
for the symmetric price equilibrium without congestion but with trip chaining. 

Residents live in a city centre and travel to one of n subcentres to work and shop. In the 
symmetric city, the subcentres are equidistant from the centre and there are at least two 
subcentres. Residents first choose where to work and then decide whether to shop at 
their work location or at another subcentre; however residents can only travel between 
the centre and each subcentre and not between subcentres (see Figure 2-1). A 
homogeneous good is produced in the city centre and used as an intermediate input for 
the differentiated good, which is produced in the subcentres. Thus, both firms and 
consumers incur travel costs. In this general equilibrium setting, the numéraire 
homogeneous good represents all production in the economy other than the 
differentiated good and all profits are returned to the households. The labour market is 
also considered separately and jobs in the differentiated industry are heterogeneous. 
Only one differentiated product variant is produced at each subcentre by a single firm 
and each household will consume one unit of differentiated good and supply one unit of 
labour for its production. Hence, in the current formulation, demand for the 
differentiated good is inelastic and, if the labour market is assumed to be fully flexible, 
the product and labour markets will clear. All remaining labour (θ) and income is 
devoted to the homogeneous good and there is therefore no possibility of non-
consumption or unemployment.  

The total production possibilities of an economy with N households and n firms can 
then be expressed in terms of the following identity for labour supply and demand: 

 1

1

(1 ) ( )
N

w d h
i i

i

N D c D nF t D nK Gθ α α α
=

+ = + + + + + + +∑ , (1) 

where ( )iD D=∑  is the total demand for the differentiated good, 1c is the marginal 

production cost of the intermediate input, F is the fixed production cost for each firm 
and transportation costs for commuting, shopping and supply of goods are given 

by
1

( )
N

w d h
i i

i

t Dα α α
=

+ + ∑ . These last are exogenous since there is no congestion. Each 
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subcentre requires some road infrastructure (K ), which is paid for by a levy (S) on 
firms and head-tax (T) on consumers. Finally, G denotes residual consumption of the 
homogeneous good.  

Transport Flow
+Shoppers
+Commuters
+Trucks 

N residents
n subcentres

City=
Residence

+Production other
goods

Differentiated
good

Differentiated
good City=

Residence
+Production other

goods

Differentiated
good

Differentiated
good

 

Figure 2-1  Schematic of city layout 

2.2. Household Preferences 

Household utility is represented by a linear function of the utility obtained from 
consumption of the differentiated and homogeneous goods and the disutility of 
supplying labour to the production of these goods. Using the household budget equation 
to substitute for consumption of the homogeneous good, an indirect conditional utility 
function can be derived to express household preferences. In this case the utility 
function represents the preferences of a household that buys differentiated good k and 
supplies labour to subcentre i: 

 
1

(1 )d w
ik k k k i i i l

l

U h p t w t T
N

α β α θ β π= − − + − − + − + −∑% % . (2) 

Each of the N households is paid a wage,iw , for working at subcentre i and buys one 

unit of variant k at price, kp . Both prices and wages will be determined by the model. 

The parameters wα  and dα  represent, respectively, the number of commuting and 
shopping trips the consumer1 undertakes per unit of production (respectively 
consumption) of the differentiated good. They are positive constants. The travel time 
required for shopping activities, kt , is zero if there is trip-chaining. Otherwise, in the 

symmetric case, commuting and shopping travel times are identical and positive 
( 0k it t t= = > ). Each household also receives a share of the firms’ profits (π). 

The utility of consumption of differentiated product variant k is given by an intrinsic 
quality component kh and a stochastic component:d

kµ ε : 

 d
k kh h µ ε= +% , (3) 

                                                      
1 In the following we will use household and consumer interchangeably as it is easier to consider the 

household as a single worker or shopper. 
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and the disutility of labour at subcentre i is similarly given by the following two 
components: 

 w
i iβ β µ ε= −% . (4) 

Hence, all households will value the quality of all product variants in the same way and 
will experience the same disinclination to work at all subcentres. However, the 
households will still vary in their tastes: the parameters iε and kε represent the intrinsic 

heterogeneity of consumer tastes and are assumed to be i.i.d. double exponentially 
distributed. The parameters wµ and dµ determine the degree of heterogeneity of 

preferences. In order to apply the nested logit approach, consistency implies that: 
0 d wµ µ< ≤ , so that households’ preferences for their choice of workplace are at least 

as strong as their preferences for shopping location. 

Substitution of (3) and (4) in the utility formulation (2) results in a random utility 
function for which the choice probabilities can be determined using the nested logit 
model. We use a heuristic approach to derive the probabilities of working and shopping 
at a given subcentre: the resident first selects his workplace and then chooses where to 
shop. The consumer surplus associated with the resident’s shopping alternatives, given 
his work location, affects his initial workplace choice. A full derivation of the choice 
probabilities can be obtained using the Generalised Extreme Value (GEV) approach of 
McFadden (Mc Fadden 1978). The decision tree for the nested logit is shown in Figure 
2-2 below.  

 

Figure 2-2 Nested logit 

In order to derive the symmetric price equilibrium, we first suppose that firm 1 deviates 
and sets price 1p for its product and pays its workers a wage1w . All other firms charge 

p* and pay w*. 

The probability of working at subcentre 1 is given by a binary nested logit model, as 
follows: 

1 2 n 

1 2 n 

Choice of work place 

Choice of shopping 

location 

 
1 2 n 1 2 n 
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µ
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. . . . 

. . . . . . 
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1 1

1 1
1 1 1

( , *)
*

( 1)

w

w
w

w w

w w

w t CS
e

P w w
w t CS w t CS

e n e

α β
µ

α β α β
µ µ

−

− + −

=
− + − − + −

+ −
, (5) 

where CS1 is the consumer surplus for a resident who works at subcentre 1  

 
1 *

1 log ( 1)

d

d d

p p t

dCS h e n e
α

µ µµ
− − − 

 = + + −
  

.  (6) 

The first term in the bracket refers to the resident who shops and works at subcentre 1 
(trip chains), while the second term refers to the resident who works at subcentre 1 but 
shops elsewhere with travel time t. 

CS-1 is the consumer surplus for a resident who works at any other subcentre k, say 

 
1 * *

1 log ( 2)

d d

d d d

p t p p t

dCS h e e n e
α α

µ µ µµ
− − − − −

−

 
 = + + + −
 
 

. (7) 

The first term in the bracket refers to the resident who works at k and shops at subcentre 
1, the second term to the resident who trip chains (works and shops at k) and the third 
term to the resident who works at k and shops at subcentre 1j k or≠ , with travel time 

t. 

The probability of working at a subcentre (other than subcentre 1) is given by 

 

1

1
1 1 1

*

*
( 1)

w

w
w

w w

w w

w t CS
e

P
w t CS w t CS

e n e

α β
µ

α β α β
µ µ

−

−
−

− + −

=
− + − − + −

+ −
. (8) 

The denominator is the same as in (5) since the consumer still has the same chance of 
working at subcentre 1 and being paid 1w  or another subcentre and being paid w*. 

The probability of a resident shopping at subcentre 1 given he works there is given by 

 

1

1|1 1
1

( , *)
*

( 1)

d
s

d

d d

h p
e

P p p
h p h p t

e n e

µ
α

µ µ

−

=
− − −+ −

. (9) 

The first term of the denominator refers to a resident who trip chains and the second to 
the resident who works at subcentre 1 but shops elsewhere. 

The probability of a resident shopping at subcentre 1, given he does not work there is 
given by 
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1

1| 1
1 * *

( 2)

d

d
s

d d

d d d

h p t
e

P
h p t h p h p t

e e n e

α
µ

α α
µ µ µ

−

− −

=
− − − − −+ + −

. (10) 

In this case the terms in the denominator cover the options of: a)shopping at subcentre 1 
but working elsewhere so there is a travel time; b) shopping and working at some 
subcentre ( 1k ≠ say); and c) shopping at k but working at subcentre ( 1j k or≠ ), so 

again there is a travel component. The resident has to travel to subcentre 1, so t appears 
in the numerator. Note that in the above equations the h and β terms cancel. 

Let 1 1
w wN NP= , the proportion of households  that work at subcentre 1. Then we can 

write the probability of shopping at subcentre 1 as 

 1 1 1|1 1 1| 1(1 )s w s w sN N P N P P −= + − . (11) 

We also know from market clearing that 1 1
w sN N= and by substitution in (11) we get 

 1 1|1 1| 1 1| 11 0w s s sP P P P− − − + − =  , (12) 

which provides a relation between the price 1p and wage 1w set by firm 1. 

2.3. Firms 

In general, the profit of firm i can be written: 

 1( , ) ( ) ( ) 1... ,h w
i i i iw p p w c t NP F S i nπ α= − − − − + ∀ =  (13) 

where the demand d w
i i iD NP NP= = under market clearing conditions. Since firm 1 

deviates, his profit becomes 

 1
1 1 1 1 1 1( , *, , *) ( ) ( )h ww w p p p w c t NP F Sπ α= − − − − + . (14) 

Firms compete in a non-cooperative Nash game with their own prices and wages as the 
strategic variables. Since from (12) we know that 1p determines 1w  and vice versa, we 

take the wage as the strategic variable for firm 1 and write 1 1 1( )p g w= . Note 

that: 1 1 1( ) ( , *, *)g w g w w p= . Then, further assuming that firm 1 takes the prices and 

wages of the other firms as given, the first order condition for profit maximisation by 
this firm is given by 

 ( )11 1 1
1 1 1

1 1

1
1 0

w
h w

w

d dg P
p w c t NP

dw dw

π α
µ

    −
= − + − − − =   
     

. (15) 

In the next subsection, we derive an expression for the key strategic term dg1/dw1.  

2.4. Market equilibrium 

In order to derive an expression for a candidate Nash equilibrium from the profit 
maximisation condition and prove its existence, we first need to determine the 
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derivative of the price at firm 1 with respect to its wage ( 1 1dg dw  in equation (15)).  I 

added in a few place inequalities inside the equations.  

Lemma 1  1

1

0
1 (1 )

dg

dw

µ
µ

−= <
+ − Φ

 where 1
d

w

µµ
µ

≡ ≤  and 1|1 1| 1
s sP P −Φ ≡ − > 0. 

Lemma 1 is proved in the Appendix. 

 

Substitution of 1 1dg dw from Lemma 1 in (15) leads to 

 ( )1 1
1 1 1

1

1
1 0

1 (1 ) ( , *)

w
h w

w

P
p w c t NP

p p

µ α
µ µ

    −− − + − − − =    + − Φ    
 (16) 

Replacing 1
wP  in (16) in terms of the conditional shopping probabilities ( 1|1

sP and 1| 1
sP − ) 

from equation (12), we obtain 

 ( ) [ ] [ ]
1|1 1| 11

1 1

1(1 ) (1 )
0

1 (1 ) 11

s s
h

w

P P
p w c t N

µ µ α
µ µ

−
  − − + − − Φ + − − − =     + − Φ − Φ− Φ     

. (17) 

Now, at equilibrium in the symmetric case, 1 *p p= and we can therefore rewrite the 

conditional shopping probabilities (9) and (10) as 

 1|1

1 1

1 ( 1)
sP

n nλ
= >

+ −
, (18) 

 1| 1 1
1 ( 1)

sP
n

λ
λ− = <

+ −
, (19) 

where ( )/ 0 0,1
d dte α µλ −≡ > ∈ from our model assumptions. Moreover, we can write 

 1|1 1| 1

1

1 ( 1)
s sP P

n

λ
λ−

−Φ = − =
+ −

. (20) 

Note, 0Φ > so there is a greater probability of trip chaining than of working and 
shopping in separate locations.1|1

sP is also increasing with λ :large travel costs or weak 

preference for shopping location increase the probability of trip chaining. There is, 
however, an equal probability of working at any of the firms ( 1 1wP n= ). Substitution of 

expressions (18), (19) and (20) in (17) allow us to specify the candidate Nash 
equilibrium. 

Proposition 1  When trip chaining is permitted, there exists a unique symmetric Nash 
equilibrium in prices and wages, for two firms or more in the market. The price-wage 
equilibrium is given by 

 
( )

[ ]
1 (1 ) 1

* * ( )
1 1 2 ( 2)

d
h w d n n

p w c t
n n n

µ λµα µ µ
µ λ µλ

 − − − = + + + −  − − − + − +  
. (21) 

Proposition 1 is proved in the Appendix.  
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From (13), in equilibrium, a firm’s gross profit per household (neglecting fixed costs) is 

 
( )

( )
(1 ) 1( )

*
1 1 2 ( 2)

w d d

n n n

µ λµ µ µπ
µ λ µλ

 − −+= −  − − − + − +  
. (22) 

Using the fact that 1µ <  and 1λ < , it can be verified that * 0π > . The comparative 

statics result is straightforward and left to the reader. The relationship between the 
mark-up in price over wage and profit and the parameters , , , ,d w dn tα µ µ and λ is 

discussed in Section 4 using a numerical example. 

It is possible to perform the same analysis, within the nested logit framework, for the 
case where consumers have to work and shop at different subcentres (i.e. perform single 
purpose trips). In this case1|1 1| 1 1 1 1s s s wP P P P n−= = = =  and the symmetric Nash 

equilibrium in prices and wages is given by 

 ( ) 1* * ( )
1

h w d

ntc

n
p w c t

n
α µ µ− = + + +

−
 (23) 

This is in fact the same as the equilibrium which can be derived when working and 
shopping decisions are taken independently (see de Palma and Proost 2005), with the 
restriction d wµ µ≤ for the nested logit approach (Anderson et al 1992). In this case 

profits only depend on the consumer heterogeneity parameters and number of firms. 

We can now compare the symmetric trip chaining equilibrium with the above 
symmetric, reference equilibrium.  

Proposition 2  The symmetric firm mark-up when households can trip chain cannot 
exceed the mark-up when households can only perform single purpose trips. The mark-
ups are in fact equal when d wµ µ=  

Proof 

Using (23), (21) can be rewritten as 

 ( ) ( )
( )

1(1 )
* * * *

1 2 ( 2)

d

ntc

n
p w p w

n n

λµ µ
µ λ µλ

 −−− = − −  − − + − +  
. (24) 

The difference in the mark-up between the two equilibria depends on the sign of the 
second term on the right hand side of (24). The terms outside the parentheses are non-
negative for 2n ≥  (at least two firms are considered in the model) since d wµ µ µ≡  is 

less than or equal to one: 0 d wµ µ< ≤ is a requirement of nested logit model. For the 

terms inside the parentheses, the numerator is positive as t, dα and dµ are all positive by 

definition and the denominator is also positive for2n ≥ . Hence the last term in (24) is 
always non-positive and the mark-up with trip chaining is at most equal to the mark-up 
without trip chaining. Q.E.D. 

The intuition is that the demand curve for shoppers with trip chaining is flatter than the 
corresponding demand curve when households cannot shop and work at the same 
subcentre. In equilibrium, a firm sells its product to a larger number of its own 
workforce than to consumers who work at other subcentres. Thus, a decrease in the 
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price by one firm would attract additional non-trip chaining customers from other 
subcentres, while retaining the customers who already work for the firm. Hence, when 
trip-chaining is possible, a change in price would lead to a greater change in demand 
compared with the case without trip chaining and as a consequence, the equilibrium 
price with trip chaining is higher than without trip chaining. In a sense, trip chaining 
decreases the spatial market power of each firm, and therefore increases 
competitiveness and therefore decreases equilibrium prices and equilibrium profit (since 
market demand is inelastic).  

3. WELFARE ANALYSIS 

Proposition 3   In the symmetric equilibrium, the consumer surplus2 when households 
can trip chain is larger than the consumer surplus when households must perform only 
single purpose trips. The difference in consumer surplus is given by 

 
1 1

( * *) log 1d
ntc ntcCS CS p p

n

λµ
− −− = − + + 

 
. (25) 

Proposition 3 is proved in the Appendix. Consumer surplus depends on price, rather 
than price minus wage. The price difference in (25) can be obtained from Proposition 2 
by setting the wage equal to one (without loss of generality).  

Although consumer surplus increases, firms’ profits are smaller when households trip 
chain, compared with the reference equilibrium, as the price mark-up they can charge 
above the wages they pay is reduced. However, this negative effect is more than 
compensated for by the increase in consumer surplus, since the difference in prices are 
just transfers between households and firms. 

Proposition 4  In the symmetric equilibrium, welfare2 is greater when households can 
trip chain, than when they have to perform only single purpose trips.  The difference in 
welfare is given by 

 
1 1

log 1d
ntcW W

n

λµ
− −− = + 

 
. (26) 

Proposition 4 is proved in the Appendix. 

When consumers are able to trip chain there is both a direct benefit to society from the 
reduced travel cost and an additional cost due to the reduction in consumer variety. 
Since each consumer trip chains with probability1|1 1sP n> , the term d t nα  represents 

the lower bound for the reduction in travel cost. This can be obtained from (26) by 
setting 1 1λ ε− = +  where 1,d dtε α µ= << for small travel times t. Then, the welfare 

saving 

( ) ( )2 2log 1 ,d d d
ntc

t
W W O O

n n n

αε εµ µ ε ε − = + = + = +  
 

                                                      
2 Consumer surplus and Welfare are calculated per household 
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is approximately equal to the average travel time saving since 1|1 1 0.sP n if λ≈ ≈ . More 

generally, we have the following inequality: 

,d
ntc

t
W W

n

α− <  

which shows that the welfare savings are generally smaller than the travel time saving. 
The reason is that, when an individual decides to stay at his work place and to trip chain 
in order to economize travel time, there is one 1 n th  of chances that the product 

purchased at the work place does not fit exactly her choice (i.e. without trip chaining, 
the individual would not shop at his workplace but elsewhere). Thus trip chaining not 
only decreases travel time but also decreases the variety of goods offered. For the 
extreme case, where transportation costs are very high, almost all consumers will trip 
chain and the variety offered will decrease from n to 1 (and the benefit from variety will 
decrease from log(n) to 0.  

4. NUMERICAL EXAMPLE 

The trip chaining equilibrium in price and wages, (24), depends in a complex way on a 

number of parameters: in particular , , ,w d d nµ µ α , /d dte α µλ −≡ and travel time, t. The 

following numerical exercise illustrates the effect of each of these parameters on the 
price-wage equilibrium and also on profit, consumer surplus and welfare. 

We use the simple, stylised example of an economy of one day3. As a reference, we 
assume there are three firms offering the differentiated good. Each resident makes one 
commuting trip and one shopping trip per day, giving a total transport time of one hour. 
He also supplies 7.5 hours of labour, of which one hour is spent on the production of the 
differentiated good. Truck deliveries are such that each truck contains sufficient 
intermediate good to produce 50 units of the differentiated good. One unit of the 
differentiated good requires an intermediate input that can be produced using 0.1 units 
of homogeneous labour. Finally, we neglect fixed costs and levies, as these do not affect 
the short-run equilibria or welfare analysis, and present gross profits per household. 

In Table 4-1 above we examine the effect on price minus wage and gross profit (π) of 
varying the consumers’ preference for work and shopping locations ( wµ and dµ , 

respectively), number of shopping trips (dα ) and travel time, for the equilibria with and 
without trip chaining. We also look at the effect of increasing the number of firms. 

When consumers can trip chain, profits increase as wµ increases since the strong 

preference for working location means that a firm can pay lower wages (or charge 
higher prices) without losing workers. Similarly, a weak preference for shopping 
location (small dµ ) necessitates firms charging lower prices to retain shoppers. Profits 

also decrease when there are more firms due to increased competition. Similar effects 
are also seen for changes in these parameters in the no trip-chaining reference case.  

                                                      
3 This example is based on the numerical work presented in de Palma et al (2004) 
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dµ  wµ  dα  n t 
(hours) λ p*-w* pntc-wntc π* πntc 

∆π* 
(%)† 

∆π 
(%)†† 

1 2 1 3 0,5 0,61 4,488 4,610 1,459 1,500 2,7 0,0 
1 5 1 3 0,5 0,61 8,923 9,110 2,938 3,000 2,1 101,3 

0,1 2 1 3 0,5 0,01 3,188 3,260 1,026 1,050 2,3 -29,7 
1 2 1 10 0,5 0,61 3,410 3,443 0,330 0,333 1,0 -77,4 
1 2 0,2 3 0,5 0,90 4,585 4,610 1,492 1,500 0,6 2,2 
1 2 2 3 0,5 0,37 4,379 4,610 1,423 1,500 5,1 -2,5 
1 2 1 3 2 0,14 4,259 4,640 1,373 1,500 8,5 -5,9 
1 2 1 3 0,25 0,78 4,543 4,605 1,479 1,500 1,4 1,4 

Table 4-1 Comparative statics with and without trip chaining 
† The difference in profit is calculated as a percentage of the symmetric case without trip chaining 

†† The difference in profit is calculated as a percentage of the reference case highlighted in the first 

row (trip chaining only) 

Interestingly, however, we see that, when consumers can work and shop at the same 
subcentre, the number of shopping trips they make (dα ) plays a role. If consumers do 
not make frequent shopping trips then firms can make higher profits. A small value of 

dα means that the travel cost for shopping trips is low, which is equivalent to the 
demand curve becoming steeper. A smaller proportion of workers trip chain, so any 
decrease in price would still attract shoppers from other subcentres but these are added 
to a smaller number of trip-chaining workers. Decreasing or increasing the travel time 
from the city centre to the subcentres has the same effect on profits as doesdα . A longer 
travel time means higher travel costs and, in this case, a higher proportion of the 
workforce prefers to trip-chain to minimise these costs. The demand curve is 
consequently flatter, since decreasing the price at one subcentre would attract customers 
from other subcentres in addition to the households that trip chain, and prices and 
profits are lower. For the no trip-chaining case, the price mark-up over wage does 
depend on travel time because of travel costs for the intermediate good but profits are 
independent of t. Note also that, for the trip chaining case, profit increases with λ . 

It is clear from Table 4-1 that when consumers can trip chain, firms cannot make greater 
profits than when consumers can only make single purpose trips. The magnitude of the 
difference in profits obviously depends on the values of the input parameters but the 
difference is large for long travel time or high frequency of shopping trips. In Table 4-2 
we present the difference in consumer surplus and welfare (per household) between the 
two equilibria. 

As expected, the largest gains in consumer surplus and welfare with trip chaining are 
seen when consumers have a low preference for shopping location, so they are more 
likely to trip chain and firms also charge lower prices. Note that a stronger consumer 
preference for working location has no effect on welfare but decreases consumer surplus 
as firms are able to increase prices.  
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dµ  wµ  dα  n t (hours) λ CS*-CSntc W*-Wntc W*-Wntc (%GDP) 

1 2 1 3 0,5 0,61 0,07 0,20 2,3 
1 5 1 3 0,5 0,61 0,01 0,20 2,3 

0,1 2 1 3 0,5 0,01 0,32 0,39 4,6 
1 2 1 10 0,5 0,61 0,03 0,06 0,7 
1 2 0,2 3 0,5 0,90 0,01 0,03 0,4 
1 2 2 3 0,5 0,37 0,22 0,45 5,3 
1 2 1 3 2 0,14 0,76 1,14 13,4 
1 2 1 3 0,25 0,78 0,03 0,09 1,1 

Table 4-2 Welfare effects with and without trip chaining 

 

5. CONCLUSIONS 

There has been a considerable amount of work undertaken to study the empirical 
aspects of trip chaining, and more generally of activity patterns. Yet, these works tend 
to focus on the consumer side, only, and therefore neglect the impacts of trip chaining 
on the quality of activity, and on the profitability of market places. We have shown that 
trip chaining has a positive impact on consumers, since on one hand the equilibrium 
price decreases and on the other hand, the average travel cost decreases. Of course, the 
variety available to the consumer decreases also since a certain number of consumers 
are now willing to economize on variety (that is, these consumers are willing to 
purchase a good which is not the optimal one) in order to economize on travel time. 
Yes, consumers benefit from trip chaining. Of course, this shift from the optimal good 
to another good is possible only if the difference in the quality of the match between 
consumers and products is not too severe. Moreover, since market demand is constant 
and price decreases, firm profitability decreases. Since prices are only transfers, as 
expected the welfare increases with trip chaining. If we consider the long-run (free 
entry) equilibrium, trip chaining decreases profits and therefore induces exit. As a 
consequence, price increases, and product variety decreases, two bad signs on the 
consumer side. 

Finally, we have considered a setup with constant demand. With elastic demand, trip 
chaining will induce more travellers to shop. We conjecture that trip chaining benefits 
will then be even stronger, from the social point of view.  
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APPENDICES 

Appendix A1: Proof of Proposition 1. 

Recall from Lemma 1 that at the candidate equilibrium  

 1

1 1 (1 )

dp

dw

µ
µ

−=
+ − Φ

 (27) 

where 
d

w

µµ
µ

≡  and 1|1 1| 1
s sP P −Φ ≡ − . This expression is negative and single valued, so 

that there exists a one-to-one relationship between p1 and w1. Hence the set of prices is a 
convex, compact set and the equilibrium exists. Further (27) is constant, since µ, t and n 
are all exogenous. 

Since a candidate equilibrium exists, we need only show that the profit function is 
quasi-concave to guarantee that the candidate equilibrium is the unique Nash solution. 

At any extremum 
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From our model assumptions 0 1µ< ≤  and 0dµ > . Further, we know that, at the 

candidate symmetric equilibrium, 0Φ > , 1|1
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 is non-negative for 

2n ≥ . Thus (31) is non-positive. 

Substituting from (31) in (30) means that the first term on the right hand side of (30) is 

non-positive. We also know from (27) that 1
1

0dp
dw < , so the second term in (30) is 

negative. Hence 
2

1
2

1

d

dw

π
 is strictly negative at any extremum (solution of the first-order 

equations) and thus the profit is quasi-concave. As a consequence, the candidate Nash 
equilibrium is a Nash equilibrium. QED. 

 

Appendix A2:  Proof of Proposition 3 

In the symmetric equilibrium with trip chaining, consumer surplus  per household is 
given by 
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 with 1 *p p= ) 

When trip chaining is not an option, consumer surplus can be written as 

 [ ]log *d d
ntc ntcCS n h p tµ α= + − −  (33) 
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Subtracting (33) from (32) leads to 
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where / 0
d dte α µλ −≡ > . The second term in (34) is always positive for1n ≥ . From 

Propositions 1 and 2 we know that the mark-up is at most as large with trip chaining as 
without and, although this does not define the price levels unambiguously, we can set 
w=1 wlog in each case, leading to a non-negative price difference and hence larger 
consumer surplus. 

 

Appendix A3: Proof of Proposition 4 

The welfare function (per household) is derived from [ ]max ikW E U=   since profits are 

equally distributed among households (see for example Anderson and de Palma 1992). 
With trip chaining, the expected maximum utility obtained by the household at the 
second stage (when making shopping choices) is in fact the consumer surplus associated 
all possible shopping options given the choice of work location at the first stage in the 
nested logit tree. Welfare can then be calculated by maximising expected utility at the 
first stage, given by  

 ( ) max ' w
k k kW n E V µ ε = +   (35) 

where 

 ( )
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' * log 1

d

d d

h p h p t

w d
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α
µ µβ α µ
− − − 

 = Ξ + − − + + −
 
 

 (36) 

is commonly known as the composite utility or expected maximum utility and contains 
terms common to all residents who work at subcentre i plus the consumer surplus 
associated with all alternatives in the nest (in this case shopping locations given the 
choice of ith subcentre for work).  

1(1 ) (1 ) * * ( )hn n
T p w c t F K

N N
θ β π θ β αΞ = − + − = − + − − − − + . 

Now, (35) can be rewritten as  
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where 1ˆ (1 ) ( ) hn
F K c t h

N
θ β α βΨ = − − + − + + −  and /d dte α µλ −≡ .  

 

Following the same procedure for the case without trip chaining, the consumer surplus 

reduces to 
*
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This leads to the following expression for welfare: 

 ( ) ( )ˆ( ) log( )d w d w
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 where Ψ̂ is defined above. Subtracting (38) from (37) we obtain 
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The right hand side of (39) is positive for 1n ≥  and t, dα and dµ all greater than zero, 

which are the model assumptions we specified. 



Trip chaining: who wins, who loses?   18 

REFERENCES 

Adler, T; Ben-Akiva, M E; (1979): A theoretical and empirical model of trip chaining 
behaviour. Transportation Research Part B, 13, 243-257. 

Anderson, SP; de Palma, A; Thisse, JF (1992): Discrete Choice Theory of Product 
Differentiation. MIT Press.  

Axhausen, K; Zimmermann,A; Schönfelder, S; Rindsfüser, G; Haupt, T(2002): 
Observing the rhythms of daily life: a six week travel diary. Transportation, 29, 95-124. 

Bhat, C et al (2004): Intershopping duration: an analysis using multiweek data. 
Transportation Research Part B, 38, 39-60. 

Bhat, C; Singh, SK (2000): A comprehensive daily activity-travel generation model 
system for workers. Transportation Research Part A., 34, 1-22. 

Becker, GS (1987) Economic Analysis and Human Behaviour. Advances in 
Behavioural Economics, 1, 3-17 

Bowman, J L; Ben-Akiva, M E (2001): Activity-Based Disaggregate Travel Demand 
Model System with Activity Schedules. Transportation Research Part A., 35, 1-28. 

Brooks, CM; Kaufmann, PJ; Lichtenstein, DR (2004): Travel Configuration on 
Consumer Trip-Chained Store Choice. Journal of Consumer Research, 31, 241-48 

De Palma, A; Dunkerley, F; Proost, S: (2004): Imperfect competition in a city with 
asymmetric subcentres in Spatial Evolution and Modelling, Nijkamp, P and Reggiani, A 
(eds), Edward Elgar, in press. 

De Palma, A; Proost, S (2005): Imperfect competition and congestion in the city. ETE 
Working paper no. 2004-09. 

Golob, TF (2000): A Simultaneous Model of Household Activity Participation and Trip 
Chain Generation. Transportation Research: Part B, 34, 355-76. 

Haggett, P (1977) Locational analysis in human geography, Wiley, NY 

Hägerstrand,T (1970): What about people in regional science? Papers of the Regional 
Science Association, 24, 7-21. 

Hägerstrand,T (1975) Space-time and human conditions in Dynamic Allocation of 
Urban Space, Karlqvist, A; Lindqvist and Snickars, F (eds), Saxon House, Westmead, 3-
14. 

Hensher, DA;Reyes, AJ (2000):Trip Chaining as a Barrier to the Propensity to Use 
Public Transport. Transportation, 27, 341-61. 

Kuppam, AR; Pendyala, RM (2001): A Structural Equations Analysis of Commuters' 
Activity and Travel Patterns. Transportation, 28, 33-54. 

Recker, W W; Chen, C; McNally, M G (2001): Measuring the Impact of Efficient 
Household Travel Decisions on Potential Travel Time Savings and Accessibility Gains. 
Transportation Research: Part A, 35, 339-69. 


