
Different Policy Objectives of the Road Pricing Problem – a 
Game Theory Approach 

 
Dusica Joksimovic*, Erik Verhoef**, Michiel  C. J. Bliemer* , Piet H. L. Bovy* 

* Delft University of Technology, Faculty of Civil Engineering and Geosciences 
Transportation and Planning Section,P.O. Box 5048, 2600 GA Delft, The Netherlands 

Phone: +31 15 27 84981    fax: +31 15 27 83179 
E-mail: d.joksimovic@citg.tudelft.nl, m.bliemer@citg.tudelft.nl, p.h.l.bovy@citg.tudelft.nl 

 
** Free University of Amsterdam, Amsterdam, The Netherlands 

Department of Spatial Economics,  
e-mail: everhoef@feweb.vu.nl 

 
Submitted to the 45th Congress of the European Regional Science Association 

Abstract 

Using game theory we investigate a new approach to formulate and solve optimal tolls with a 

focus on different policy objectives of the road authority. The aim is to gain more insight into 

determining optimal tolls as well as into the behavior of users after tolls have been imposed 

on the network. The problem of determining optimal tolls is stated and defined using utility 

maximization theory, including elastic demand on the travelers’ side and different objectives 

for the road authority. Game theory notions are adopted regarding different games and 

players, rules and outcomes of the games played between travelers on the one hand and the 

road authority on the other. Different game concepts (Cournot, Stackelberg and social planner 

game) are mathematically formulated and the relationship between players, their payoff 

functions, and rules of the games are defined.  The games are solved for different scenarios 

and different objectives for the road authority, using the Nash equilibrium concept. Using the 

Stackelberg game concept as being most realistic for road pricing, a few experiments are 

presented illustrating the optimal toll design problem subject to different pricing policies 

considering different objectives of the road authority. Results show different outcomes both in 

terms of optimal tolls as well as in payoffs for travelers. There exist multiple optimal 

solutions and the objective functions may have a non- continuous shape. The main 

contribution is the two-level separation between the network users and the road authority in 

terms of their objectives and influences. 
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1. Introduction and background 

In recent years, researchers have become increasingly interested in the effects 

of introducing road pricing measures on transportation networks (see more in (1)). 

The view that pricing can be one of the strategies to achieve more efficient use of 

transportation capacity has led to the expectation that road pricing can relieve 

congestion on the roads and improve the use of the transportation system. 

Nevertheless, road pricing is a very controversial and complex topic making it 

necessary to consider road pricing from different perspectives. Which objectives the 

road authority would like to achieve? Who is involved in decision-making and how 

should decisions be made? How will the travelers change their travel behavior after 

introducing road pricing? How will travelers interact with each other and how can the 

road authority influence or even control travel behavior of travelers? To answer such 

questions we need a flexible framework for analyzing the behavior of travelers as well 

as of the road authority.  

Game theory provides such a framework for modeling decision-making 

processes in which multiple players are involved with different objectives, rules of the 

game, and assumptions. Considering the problem of designing optimal tolls on the 

network, there is a need for better insights into the interactions between travelers and 

the road authority, their nature, and the consequences of these interactions. Which 

objective the road authority will apply will have a strong influence on how, where, 

when and how much toll will be levied, and on its resulting welfare. The focus of this 

paper is on assessing different objectives a road authority may adopt and on their 

influence on optimal toll design. 

In this paper we analyze in a game-theoretic framework a very simple route 

choice problem with elastic demand where road pricing is introduced. First, the road-

pricing problem is formulated using game theory notions with which different games 

are described. After that, a game-theoretic approach is applied to formulate the road 

pricing game as social planner (monopoly), Stackelberg, and Cournot games, 

respectively. The main purpose of the experiment reported here is to show the 

outcomes of different games established for the optimal toll design problem. The toll 

setting problem is defined using flow- dependent tolls on links in a network.  
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2. Literature review   

2.1 Transportation problems and game theory 

Game theory first appeared in solving transportation problems in the form of 

so-called Wardropian equilibrium of route choice, see (2), which is similar to the 

Nash equilibrium of an N-player game, see (3). For the definition of a Nash 

equilibrium see Section 5.  

2.2 Optimal traffic control problems and game theory 

In (4) for the first time different problems in transportation systems modeling 

are described in which a game theory approach is proposed for solution algorithms. In 

that paper, relationships are drawn between two game theory models based on the 

Nash non-cooperative and Stackelberg games. 

In (5) the dynamic mixed behavior traffic network equilibrium problem is 

formulated as a non-cooperative N-person, non zero-sum differential game. A simple 

network is considered where two types of players (called user equilibrium (UE)-

players and Cournot-Nash (CN)-players respectively) interact through the congestion 

phenomenon. A procedure to compute system optimal routings in a dynamic traffic 

network is introduced by (6). Fictitious play is utilized within a game of identical 

interests wherein vehicles are treated as players. In the work of (7), a two-player, non-

cooperative game is established between the network user seeking a path to minimize 

its expected trip cost on the one hand, and an “evil entity” choosing link performance 

scenarios to maximize the expected trip cost on the other. An application of game 

theory to solve risk-averse user equilibrium traffic assignment can be found in (8). 

Network users have to make their route choice decisions in the presence of 

uncertainty about route costs reason why they need to have a strategy towards risk. In 

(9) a preliminary model of dynamic multi-layer infrastructure networks is presented in 

the form of a differential game. In particular, three network layers (car, urban freight 

and data) are modeled as Cournot-Nash dynamic agents. In (10) the integrated traffic 

control and dynamic traffic assignment problem is presented as a non-cooperative 

game between the traffic authority and highway users. The objective of the combined 

control-assignment problem is to find dynamic system optimal signal settings and 

dynamic user-optimal traffic flows. The combined control-assignment problem is first 

formulated as a single-level Cournot game: the traffic authority and the users choose 
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their strategies simultaneously. Then, the combined problem is formulated as a bi-

level Stackelberg game in which the traffic authority is the leader who determines the 

signal settings in anticipation of the user’s responses.  

2.3 Road pricing problems and game theory 

The problem of determining optimal tolls in transportation networks is a 

complex issue. In (11) the question what happens when jurisdictions have the 

opportunity to establish tollbooths at the frontier separating them is examined. If one 

jurisdiction would be able to set his policy in a vacuum it is clearly advantageous to 

impose as high a toll on non-residents as can be supported. However, the neighboring 

jurisdiction can set a policy in response. This establishes the potential for a classical 

prisoner’s dilemma consideration: in this case to tax (cooperate) or to toll (defect). In 

(12) an application of game theory and queuing analysis to develop micro-

formulations of congestion can be found. Only departure time is analyzed in the 

context of a two-player and three-player game respectively where interactions among 

players affect the payoffs for other players in a systematic way. In (13) route choice 

and elastic demand problem is considered with focus on different game concepts of 

the optimal toll problem. A few experiments are done showing that the Stackelberg 

game is the most promising game between the road authority and the travelers if only 

one road authority’s objective is considered. 

 There is a lack in the literature about the importance of different policies the 

road authority may adopt, and outcomes that can be result of the different objectives 

and games played with the travelers. Therefore, different policy objectives of the road 

authority in the optimal toll design problem as well as different game concepts 

consequences will be the focus of this paper. 

3. Problem statement (non-cooperative game theory) 

The interactions between travelers and the road authority can be seen as a non-

cooperative, non-zero sum, (N+1) players game between a single traffic authority on 

the one side and N network users (travelers) on the other. The objective of the road-

pricing problem, which is the combined optimal toll design and traffic assignment 

problem, is to find system-optimal tolls and user-optimal traffic flows simultaneously. 

This road-pricing is an example of a bi-level optimization problem. The user-

equilibrium traffic assignment problem (lower level problem) can be formulated as 
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non-cooperative, N-person, non-zero-sum game solved as a Nash game. The upper 

level problem may have different objectives depending on what the road authority 

would like to achieve. This question will be the focus of this paper.  

 A conceptual framework for the optimal toll design problem in case of elastic 

demand addressed from different road authority’s objectives is given in Figure 1. 
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Figure 1 Conceptual framework for optimal toll design with route and trip 

choice 

The road authority sets tolls on the network while travelers respond to tolls by 

changing their travel decisions. Depending on travel costs, they can decide to travel 

along a certain route or decide not to travel at all in the tolled network. 

In the road-pricing problem, we are dealing with an N+1-player game, where 

there are N players (travelers) making a travel choice decision, and one player (the 

road manager) making a control or design decision (in this case, setting road tolls). 

Adding the traffic authority to the game is not as simple as extending an N-player 

game to an N+1 player game, because the strategy space and the payoff function for 

this additional player differs from the rest of the N players. In fact, there are two 

games played in conjunction with each other. The first game is a non-cooperative 

game where all N travelers aim to maximize their individual utility by choosing the 

best travel strategy (i.e. trip choice and route choice), taking into account all other 

travelers’ strategies. The second game is between the travelers and the road manager, 

where the road manager aims to maximize some network performance by choosing a 

control strategy, taking into account that travelers respond to the control strategy by 

adapting their travel strategies. The two games can be described as follows: 
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The outer level game, being the toll design problem, consisting of the following 

elements: 

1. Players: the authority on the one side and N potential travelers on the other; 

2. Rule 1: the authority sets the tolls taking the travelers’ behavior into account 

as well as possible restrictions on the toll levels in order to optimize a 

certain objective.  

3. Rule 2: travelers react on travel costs (including tolls) and change their 

behavior (route choice, trip choice) as to maximize their individual 

subjective utilities.  

4. Outcomes of the game: a) optimal strategies for the authority (tolls), b) 

payoff for the authority  (e.g. social welfare, revenues), c) optimal strategies 

for the travelers (trip and route decisions) and d) payoff for the travelers 

(utilities). The outcomes depend on the objective function for the authority  

used in the model.  

 

The inner level game, being the network equilibrium problem, consisting of the 

following elements: 

1.    Players: N travelers  

2.    Rule: travelers make optimal trip and route choice decisions as to maximize their 

individual subjective utilities given a specific toll pattern. 

3.    Outcome of the game: a) optimal strategies for the travelers (trip and route 

decisions), b) payoff for the travelers (utilities) 

Our main focus in this paper is to investigate the outer level game between the 

road authority and users, although the inner level game between travelers is part of it.  

4. Model structure 

The objectives of the road authority and the travelers are different and 

sometimes even opposite. The upper level objective may be to minimize total travel 

time, to relieve congestion, to improve safety, to raise revenue, to improve total 

system utility, or anything else. The lower level objective may be the individual travel 

time, travel cost, or the individual travel utility. In this paper, we use the individual 

travel utility as the objective to maximize for travelers.  
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Since the purpose of this paper is to gain more insight into the structure of the 

optimal toll design problem under different policy objectives by using game theory, 

we restrict ourselves to the case of a very simple network in which only one origin-

destination (OD) pair is considered. Between this OD pair, different non-overlapping 

route alternatives are available. The generalized route travel cost function, c  of 

traveler i for route p includes the travel time costs and the toll costs,  

pi

,pi p pc ατ θ= +          (1) 

where τ p  is the travel time of route p, pθ  is the toll costs of route p, and α  denotes the 

value-of-time (VOT) which converts the travel time into monetary costs. Let piU  

denote the trip utility for making a trip along route p of traveler i. This trip utility 

consists of a fixed net utility U  for making the trip (or arriving at the destination), and 

a disutility consisting of the generalized route travel costs :pic  

.pi piU U c= −           (2) 

According to utility maximization theory, a trip will be made only if the utility of 

doing an activity at a destination minus the utility of staying at home and the disutility 

of traveling is positive. In other words, if 0≤pU  then no trip will be made. By 

including a fictitious route in the route choice set representing the travelers’ choice not 

to travel, and attaching a disutility of zero to this ‘route’ alternative, we combine route 

choice and trip choice into the model. Travelers are assumed to respond according to 

Wardrop’s equilibrium law extended with elastic demand: At equilibrium, no user can 

improve its trip utility by unilaterally making another route choice or trip choice 

decision. 

  For the sake of simplicity we assume the deterministic utility case without a 

random error term.. For more elaborate definitions, see (14). 

5. Game theory applied to road pricing 

Let us consider first the N-player game of the travelers, where  is the set of 

available alternatives for  traveler i, 

iS

{1, , }.i N∈ …  The strategy iis S∈ that traveler i will 

play depends on the control strategy set by the road manager, denoted by vector ,θ  

and on the strategies of all other players, denoted by 1 1 1, , , ).i i i( , , Ns s s s s− − +≡ … …  We 
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assume that each traveler decides independently seeking unilaterally the maximum 

utility payoff, taking into account the possible rational choices of the other travelers. 

Let ( ( ), ( ),i i iJ s s )θ θ θ−  denote the utility payoff for traveler i for a given control strategy 

.θ  This utility payoff can include all kinds of travel utilities and travel cost.  Utility 

payoff for traveler i can be expressed as follows: 

( ) ( )( , ,i i iJ s sθ θ−

pi

(*( ) arg max
i i

i is S
s J *θ

∈
=

* ( ),s θ

(* arg max (R s
θ

θ
∈Θ

=

) piU cθ = − pi        (3) 

where c  is defined in expression (1) and U  in expression (2). pi

If all other travelers play strategies * ,is−  then traveler i will play the strategy 

that maximizes his payoff utility, i.e. 

)* ( ), ( ), .i is sθ θ θ−        (4) 

If Equation (4) holds for all travelers {1, , },i N∈ …  then * * *( ) ( ( ), ( ))i is s sθ θ θ−≡  is 

called a Nash equilibrium for the control strategy .θ  In this equilibrium, no traveler 

can improve his utility payoff by unilateral change of behavior. Note that this 

coincides with the concept of a Wardrop user-equilibrium. 

Now consider the complete N+1-player game where the road manager faces 

the N travelers. The set  describes the alternative strategies available to the road 

manager. Suppose he chooses strategy 

Θ

.θ ∈ Θ , then, depending on this strategy and on 

the strategies chosen by the travelers, his utility payoff is *( ( ), ),R s θ θ  and may 

represent e.g. the total system utility or the total profits made. The road manager 

chooses the strategy *θ  in which he aims to maximize his utility payoff, depending on 

the responses of the travelers: 

)* ), .θ θ         (5) 

If Equations (4) and (5) are satisfied for all (N+1) players, where *θ θ=  in 

Equation (4), then this is a Nash equilibrium in which no player can be better off by 

unilaterally following another strategy. Although all equilibria use the Nash concept, a 

different equilibrium or game type can be defined in the N+1-player game depending 

on the influence each of the players has in the game. Game theory notions used in this 

paper are adopted from work of (15). 
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6. Different game concepts 

  In the following we will distinguish three different types of games between 

the road authority and the travelers, namely, Monopoly, Stackelberg and Cournot 

game, respectively. 

6.1 Social planner game  

In this case, the road manager not only sets its own control, but is also assumed able 

to control the strategies that the travelers will play. In other words, the road manager 

sets *θ  as well as *.s This case will lead to a so-called system optimum solution of the 

game. A Social planner (monopoly or solo player) game represents the best system 

performance and thus may serve as a ‘benchmark’ for other solutions. This game 

solution shows what is best for the one player (the road manager), regardless of the 

other players. In reality, however, a social planner solution may not be realistic since 

it is usually not in the users’ best interest and is it practically difficult to force 

travelers choosing a specific route without an incentive. From an economic point of 

view, in this case the road authority has complete (or full) market power. 

Mathematically, the problem can be formulated as follows: 

* *

,
( , ) arg max ( , ).

s S
s

θ
R sθ θ

∈Θ ∈
=         (6) 

6.2 Stackelberg game  

In this case, the road manager is the ‘leader’ by setting the control, thereby directly 

influencing the travelers that are considered to be ‘followers’. The travelers may only 

indirectly influence the road manager by making travel decisions based on the control. 

It is assumed that the road manager has complete knowledge of how travelers respond 

to control measures. The road manager sets *θ  and the travelers follow by playing 

.* *( )s θ From an economic point of view, in a Stackelberg game one player has more 

market power than others players in the game (in this case the road authority has more 

market power than the travelers). The Stackelberg game is a dynamic, multi-stage 

game of complete and perfect information. The order in which decisions are made is 

important. In a game with complete information, every player is fully informed about 

the rules of the game, the preferences of each player, and each player knows that 

every player knows. In other words, for the road pricing game we assume that apart 
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from the rules of the game all information about travel attributes (toll levels, available 

routes, travel times) are known to all travelers. A game with perfect information 

means that decision makers know the entire history of the game. A dynamic game has 

the following properties: 

• the successive moves (implemented strategies) of the two players occur in 

sequence, 

• all previous moves are observed before the next move is chosen (perfect history 

knowledge), 

• the players’ payoff from each feasible combination of moves are common 

knowledge (complete payoff information). 

For more details about complete and imperfect games, see e.g. (16). The equilibrium 

is determined by backward induction where the traffic authority initiates the moves by 

setting a control strategy. Steps for the road pricing game are as follows: 

1. The road authority chooses toll values from the feasible set of tolls. 

2. The travelers react on the route cost (with tolls included) by adapting their route 

and/or trip choice. 

3. Payoffs for the road authority as well as travelers are computed.  

4. The optimal strategy for the road authority including the strategies of travelers is 

chosen. 

The problem can be mathematically formulated as to find * *( , )θs  such that: 

 
* *arg max ( ( ), ),R s

θ
θ θ θ

∈Θ
=    where   (7) * *( ) arg max ( , , ), 1, , .

i i
i i i is S

s J s s iθ θ−∈
= ∀ … N=

6.3 Cournot game  

In contrast to the Stackelberg game, in this case the travelers are now assumed to have 

a direct influence on the road manager, having complete knowledge of the responses 

of the road manager to their travel decisions. The road manager sets * *( ),sθ  depending 

on the travelers’ strategies .* *( )s θ  This type of a so-called duopoly game, in which two 

players choose their strategies simultaneously and therefore one’s player’s response is 

unknown in advance to others, is known as a Cournot game. Mathematically the 

problem can be formulated as follows. Find * *( , )θs  such that 
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* *arg max ( , , ),i iR s s
θ

*θ θ−∈Θ
=   and    (8) * * *arg max ( , , ), 1, , .

i i
i i i is S

s J s s iθ−∈
= ∀ … N=

*

The different game concepts will be illustrated in the next section. It should be 

pointed out that the Stackelberg game is the most realistic game approach in our 

pricing context. This is a dynamic game which can be solved using backward 

induction, see e.g. (17). Mathematical bi-level problem formulations can be used for 

solving more complex games, see e.g. (18). 

7. Different objectives of the road authority 

Which objective the road authority will apply will have influence on the 

optimal toll levels. Depending on the authority’s objective, different utility payoff 

functions can be formulated. 

 Assuming the road authority’s objective of maximizing total travel utility (the 

utility of all network users together), the objective is defined as the sum of the payoff 

values of all travelers:   

( )*

1
max ( ), ( ( )).

N

i
i

R s J sθ θ
=

= ∑ θ

p

       (9) 

 In case the road authority aims at maximizing total toll revenues, the following 

objective may be used: 

( )* *max ( ), ( ( )) ,p
p

R s q sθ θ θ= θ∑                             (10) 

where  denotes the number of travelers using route p, which can be derived 

from the optimal strategies 

*( )pq s

*.s  Clearly, setting tolls equal to zero does not provide any 

revenues, while setting very high tolls will make all travelers decide not to travel at 

all. 

 Combining these two objectives leads to the notion of social surplus 

maximization. The social surplus can be computed by adding the toll revenues to the 

total trip utilities, such that the following problem will maximize social surplus as an 

objective: 

 

max ( )* * *

1

( ), ( ( )) ( ( )) .
N

i p
i p

R s J s q s pθ θ θ
=

= +∑ ∑ θ θ              (11) 
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8. A few experiments 

 Let us now look at the following simple problem to illustrate how the road-

pricing problem can be analyzed using game theory. Suppose there are two 

individuals wanting to travel from A to B. There are two alternative routes available 

to go to B. The first route is tolled (toll is equal to θ ), the second route is untolled. 

Depending on the toll level, the travelers decide to take either route 1 or route 2, or 

not to travel at all. The latter  choice is represented by a third virtual route, such that 

we can consider three route alternatives as available strategies to each traveler, i.e. 

 for traveler i = 1,2. Figure 2 illustrates the problem. {1,2,3}iS =

A                                      B

route 1 (tolled)

route 2 (untolled)

‘route 3’ (do not travel)
 

Figure 2  Network description for the  road- pricing problem 

Each strategy yields a different payoff, depending on the utility to make the trip, the 

travel time on the route (that increases whenever more travelers use it) and a possible 

route toll. We assume that  traveler i aims to maximize its individual travel utility 

(payoff,) given by 

1 1 2

1 2 2 1 2

( ( ), ( )) , if  ( ) 1,
( ( ), ( )) ( ( ), ( )), if  ( ) 2,

0, if  ( ) 3.

i

i i

i

U s s s
J s s U s s s

s

ατ θ θ θ θ
θ θ ατ θ θ θ

θ

 − −
= − =


=

=

            (12) 

In Equation (5), U  represents the trip utility when making the trip to 

destination B (in the calculations we assume U =210), ( )rs
pτ ⋅  denotes the route travel 

time for route r depending on the chosen strategies, while α  represents the value of 

time (we assume 6α =  for all travelers). Note that negative net utilities on route 1 and 

2 imply that one will not travel, i.e. if the cost (disutility) of making the trip is larger 

than the utility of the trip itself. The route travel times are given as a function of the 

chosen strategies in the sense that the more travelers use a certain route, the higher the 

travel time: 
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1 2
1 1 2

1 2

10, if  ( ) 1  or  ( ) 1  (e.g. flow on route 1 is 1),
( ( ), ( ))

18, if  ( ) 1  and  ( ) 1  (e.g. flow on route 1 is 2),
s s

s s
s s

θ θ
τ θ θ

θ θ
= =

=  = =
           (13) 

 

and 

1 2
2 1 2

1 2

20, if  ( ) 2  or  ( ) 2  (e.g. flow on route 2 is 1),
( ( ), ( ))

40, if  ( ) 2  and  ( ) 2  (e.g. flow on route 2 is 2).
s s

s s
s s

θ θ
τ θ θ

θ θ
= =

=  = =
          (14) 

 

Solving the game between the two travelers for a Nash equilibrium 

corresponds to a Wardrop equilibrium with elastic demand, in which no traveler can 

improve his/her utility by unilaterally changing route or deciding not to travel. For the 

sake of clarity we will only look at pure strategies in this example, but the case may 

be extended to mixed strategies as well. In pure strategies, each player is assumed to 

adopt only one strategy, whereas in mixed strategies, the players are assumed to adopt 

probabilities for choosing each of the available strategies.  In our example we are thus 

looking at discrete flows instead of continuous flows so that. Wardrop’s first principle 

according to which all travel utilities are equal for all used alternatives may no longer 

hold in this case. In fact, the more general equilibrium rule applies in which each   

traveler aims to maximize his personal trip utility. The utility payoff table, depending 

on the toll ,θ  is given in Table 1 for the two travelers, where the values between 

brackets are the payoffs for travelers 1 and 2, respectively. 

 

  Traveler 2 

  Route 1 Route 2 Route 3 

Route 1 (102 ,102 )θ θ− − (150 , 90)θ−  (150 , 0)θ−  

Route 2  (90,150 )θ−  ( 30, 30)− −  (90, 0)  Traveler 1 

Route 3 (0,150 )θ−  (0, 90)  (0, 0)  

Table 1 Utility Payoff Table for Travellers 

For example, if traveler 1 chooses route 1 and traveler 2 chooses route 2, then the 

travel utility for traveler 1 is 1(1,2) 210 6 10 150 .J θ θ= − ⋅ − = −   

In the experiments we will consider three different road authority’s objectives: total 

travel utility, social surplus, and generating revenues. For the first objective, three 

different game concepts are applied: social planner, Stackelberg and Cournot game, 
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respectively. Because Stackelberg game is the most realistic game and, we apply only 

Stackelberg game for the other two objective functions.  

8.1 CASE STUDY 1: maximize total TRAVEL utility  

Now, let us add the road manager as a player, assuming that he tries to maximize total 

travel utility, i.e. 

Max ( )* *
1 2( ), ( ( )) ( ( )).R s J s J s*θ θ θ= + θ                (15) 

The strategy set of the road manager is assumed to be { | 0}.θ θΘ = ≥ The payoffs for 

the road manager are presented in Table 2 depending on the strategy θ ∈ Θ  that the 

road manager plays and depending on the strategies the travelers play.  

  Traveler 2 

  Route 1 Route 2 Route 3 

Route 1 204 2θ−  240 θ−  150 θ−  

Route 2  240 θ−  -60 90 Traveler 1 

Route 3 150 θ−  90 0 

Table 2  Utility Payoff Table for the Road Manager if his Objective is to Maximize 

the Total Travel Utility 

Let us solve the previously defined payoff tables for different game concepts and 

different values of tolls. First, we discuss the social planner game, then the 

Stackelberg game and finally the Cournot game.  

8.1.1 Social planner game 

In the social planner game, the road manager sets the toll as well as the travel 

decisions of the travelers such that his payoff is maximized. Note that the travel utility 

always decreases as θ  increases, hence * 0.θ =  In this case, the maximum utility can 

be obtained if the travelers distribute themselves between routes 1 and 2, i.e. 

 Hence, in this system optimum, the total travel utility in the system is 

240. Note that this optimum would not occur if travelers have free choice, since 

{* (1, 2), (2,1) .s = }

0θ =  

yields a Nash-Wardrop equilibrium for both travelers to choose route 1. 

8.1.2. Stackelberg game 

Let us formulate the Stackelberg game in the following way. The road authority may 

choose one of the following strategies for the toll level on route 2: 
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Q : {0<Q<12;    12<Q<120;  Q>120} 

After the toll is being set by the road authority, the travelers react on this toll by 

reconsidering their travel choices; maybe choosing different routes. The extensive 

form of the Stackelberg game is shown in Figure 3.  

 

igure 3 Outcomes of Stackelberg game applied to maximize the total travel utility  

ow the travelers will maximize individually their own travel utility, depending on 

the toll set by the road manager. Figure 2 illustrates the total travel utility for different 
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values of θ  with the corresponding optimal strategies played by the travellers. W

0 12,θ≤ <  travellers will both choose route 1. If 12 150,θ≤ <

themselves between route 1 and 2, while for 150θ ≥  one traveller will take route 2 and 
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180
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hen 

 travellers distribute 

another traveller will not travel at all. Cl r the road manager is 

 yielding a total travel utility of 228. 

early, the optimum fo
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Figure 4 Total travel utilities depending on toll value for the objective of maximizing 

total travel utility 

8.1.3. Cournot game 

It can be shown that in case the travelers and the road manager have equal influence 

on each others strategies, multiple Cournot solutions exist. There is however one 

dominating strategy, being that the travelers both take route 1 and that the road 

manager sets zero tolls, yielding a total system utility of 204. 

 Table 3 summarizes the outcomes for the three different games.  

 

Game *θ  ( )* θis  R  iJ  

( ) ( ){ }1,2 , 2,1  240 ( ) ( ){ }90,150 , 150,90  

( ) ( ){ }1,2 , 2,1  228 ( ) ( ){ }90,138 , 138,90  

Cournot 0 ( ){ }1,1  204 ( ){ }102,102  

 3 

able 4 Utilit  Tab  

Social planner 0 

Stackelberg 12 

Table 3 Comparison of Outcomes of Different Games for the Objective of 

Maximizing Total Travel Utility 

 

DY 2:  Maximize Social Surplus 

r is assumed to maximize social surplus (see formula (11)). The 

8.2 CASE STU

Now, the road manage

strategy set of the road manager is assumed to be { | 0}.θ θΘ = ≥  The payoffs for the 

road manager are presented in Table 4 depending on the strategy θ ∈ Θ  that the road 

manager plays and depending on the strategies the travelers play.  

  Traveler 2 

  Route 1 Route 2 Route 3 

Route 1 204 240 150 

Route 2 240 -60 90 Traveler 1 

Route 150 90 0 

T y Payoff le for the Road Manager if his Objective is to Maximize

Social Surplus 
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8.2.1 Stackelberg game 

travel utility (see formula 

(9)). Figure 5 illustrates the social surplus for different values of 

Now the travelers will maximize individually their own 

θ

150,

Figure 5 Total travel utilities depending on toll value for the object aximizing 

social surplus  

 

8.3 CASE STUDY

{ }( ) (1,1)s θ = { }( ) (1,2),(2,1)s θ = { }( ) (2,3),(3,2)s θ =
θ

 with the 

corresponding optimal strategies played by the travelers. When 0 12,θ≤ <  travelers 

will both choose route 1. If 12 150,θ≤ <  travelers dis selves between route 

1 and 2, while for 150

tribute them

θ ≥  one traveler will take route 2 and another traveler will not 

travel at all. Clearly, the optimum for the road manager is *12 θ≤ ≤  yielding a total 

 of m

 3: Maximize revenues 

Now, let us add the road manager as a player, assuming that he tries to maximize 

revenues (see formula (10)). The strategy set of the road manager is assumed to be 

 

system utility of 240. 

ive

204

240

* * *

12 150

*( ( ), )R s θ θ

90

{ | 0}.θ θΘ = ≥  Depending on the strategy θ ∈ Θ  that the road manager plays and 

depending on the strategies the travelers play, the payoffs for the road manager are 

presented in Table 5. 

  Traveler 2 

  Route 1 Route 2 Route 3 

Route 1 2θ  θ  θ  

θ  

Traveler 1 

Route 2 -60 90 
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 Route 3 θ  90 0 

Table 5 Utility Payoff Table for the Road Manager if his Objective is to Maxim

Revenues 

8.3.1 Stackelberg game 

Figure 6 illustrates the revenues for different values of θ

optimal strategies played by the travelers. When 0 12,θ≤ <

route 1. If 12 150,≤ <  travelers distribute themselves between route 1 and 2, while for 

150θ ≥ one traveler will take route 2 and another traveler will not travel at all. Clearly, 

ize 

 with the corresponding 

 travelers will both choose 

θ

the optimum for the road manager is  utility of 240. 

igure 6 Total travel utilities depending on toll  valu bjective izing 

revenues  

Considering all three case studies some conclusions can be drawn: 

• There exist different objectives that all can be applied depending on what the road 

authority would like to achieve; 

nt objectives lead to different outcomes, both in terms of optimal toll 

system as well as in payoffs for players; 

ame types shows the span of outcomes of an optimal design 

*θ =  yielding a total system

and their relative worth; 

• There exist multiple optimal solutions (multiple Nash equilibria) 

• The objective function may have a non-continuous shape (jumps)  

{ }( ) (1,1)=

* ( ) (2,3θ = ),(3

 *( ( ), )R s θ θ

12

240

204

*

{ }( ) (1,2),(2,1)s θ =

12

s θ

{ }* ,2)s

θ
150

24

150,

F e for the o  of maxim

• Differe

• Looking at different g
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9. Conclusions and further extensions 

 

The purpose of the paper was to gain more insight into the road-pricing problem using 

concepts from game theory as well as different toll designs depending on different 

objectives. To that end we presented the notions of game theory and presented three 

different game types in order to elucidate the essentials of the game theoretic 

approach. These game types were applied to three different toll design objectives 

exemplified on a simplistic demand-supply network system. This clearly revealed 

differences in design results in terms of toll levels and payoffs for involved actors, 

 presented here can be extended to include other relevant travel choices 

ous travellers and 

p

the k to large cases (e.g. for large number of players 

be 

be 
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