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Abstract 
 In transport networks, travelers individually make route and departure time choice 

decisions that may not be optimal for the whole network. By introducing (time-

dependent) tolls the network performance may be optimized. In the paper, the effects 

of time-dependent tolls on the network performance will be analyzed using a dynamic 

traffic model. The network design problem is formulated as a bi-level optimization 

problem in which the upper level describes the network performance with chosen toll 

levels while the lower level describes the dynamic network flows including user-

specific route and departure time choice and the dynamic network loading. In case 

studies on a simple hypothetical network it is shown that network improvements can 

be obtained by introducing tolls. It is also shown that finding a global solution to the 

network design problem is complex as it is non-linear and non-convex. 

 

Index Terms— Bi-level optimization, dynamic road pricing, dynamic traffic 

assignment, heterogeneous users 
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1. Introduction 
 

In this paper we consider a network design problem (NDP) in which the aim is 

to determine a set of design parameters that will lead to an optimal network state. In 

our case the design parameters are (time-varying) road-pricing levels on road 

segments on a transportation network. Road pricing presents one of the market-based 

policy instruments having influence on the travel behavior of users. Many researchers 

have been working on road pricing problems trying to solve problems in 

transportation caused by increasing congestion levels (see e.g. [1], [2]). Congestion 

pricing is a type of responsive pricing that can change consumption (demand) patterns 

by influencing users’ travel choices at various levels. The problem is to determine the 

prices that should be charged to travelers in order to improve the overall level of 

service of the system. 

 Nevertheless, congestion still remains one of the unresolved problems having 

impact not only on the transportation side but also on the economic and social life of 

people. How then optimize network performance using dynamic road pricing 

measures? In this paper we try to gain more insight into the dynamic toll design 

problem and this rather complex question. 

The nature of pricing (static and especially time-varying and dynamic pricing) 

in combination with dynamic traffic assignment (DTA) model, leads to a very 

complicated problem formulation and complex solution procedures. The 

computational effort required to solve such a problem by well-known numerical 

methods grows prohibitively fast with the dimensions of the problem, restricting 

researchers to apply their algorithms only on simple hypothetical networks.  

In this paper we mathematically formulate a network design problem in which 

time-varying road prices need to be determined that will minimize the total travel time 

in the system, taking route and departure time changes of travelers as a response to the 

prices into account. The contributions of the paper can be listed as follows: a) 

dynamic instead of static traffic flows and road pricing strategies are considered, b) 

the Mathematical Programming with Equilibrium Constraints (MPEC) method is 

used (up to now, MPEC formulation is applied to static cases only); c) not only route 

choice but also departure time choice is modeled; d) analysis of a very simple 
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network shows that the network design problem is in general a complex non-convex 

optimization problem.   

 

2. Literature study 
Network design problems have been proposed in various studies, e.g. [3], [4]. 

The problem of congestion pricing has been studied in the literature from different 

modeling perspectives and under various assumptions. A classification can be made 

depending on different criteria: pricing theory (marginal cost pricing vs. second best 

pricing), objectives to be reached (minimizing total travel time or maximizing net 

social welfare or maximizing revenues), type of analysis (static or dynamic pricing), 

pricing strategy (link-based, path-based, or zone-based pricing) and user classes 

(users can be classified based on travel cost perceptions, information access, value of 

time, or vehicle category). 

Dynamic congestion pricing models in which network conditions and link tolls 

are time varying, have been addressed in [5] in which the effectiveness of various 

pricing policies (time-varying, uniform, and step tolls) are compared. Limitations of 

those models are that they consider either a single bottleneck or a single destination-

network. In [6] and [7] dynamic marginal (first-best) cost pricing models for general 

transportation networks have been developed. As indicated by the authors, the 

application of their model is limited to destination-specific (rather than route or link-

based) tolling strategies, which might not be easy to implement in practice. Moreover, 

since tolls are based on marginal cost pricing, it is implicitly assumed that all links 

can be priced.  

Modeling the joint choice of route and departure time depending on the 

behavioral assumptions and the significance on unobserved effects is given in [8]. In 

[9] a dynamic congestion-pricing model is formulated as a bi-level program, and the 

prices are allowed to affect the (sequentially modeled) route and departure time 

choice of travelers.  

Most previous studies assume that all road users have identical characteristics. 

The toll design problem that can accommodate multiple user groups applied for the 

static case is presented in the work of [10]. Our aim is to include multiple user classes 

in dynamic traffic network.  
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In the framework proposed in this paper, departure time and route choices are 

modeled simultaneously according to the results of a survey showing that the most 

important behavioral changes to road pricing are the route and departure time choices 

[11]. The dynamic road pricing design problem is formulated using the mathematical 

program with equilibrium constraints (MPEC) formulation. Our main contribution to 

the state-of-the-art is the MPEC formulation of the dynamic optimal toll design 

problem in dynamic traffic networks (up to now, only static optimal toll design is 

considered). The main purpose of studying the dynamic optimal toll problem is to 

address difficulties in modeling and complexity in optimizing the objective function 

even if it is only for very small examples. Moreover, class-specific second-best 

pricing, which is more appropriate for practice, is modeled and analyzed. Although 

complex, the feasibility of the model is illustrated by solving a simple case study. 

 

3. Problem definition and assumptions 
Considering the optimal toll design problem, the aim of the road authority is to 

optimize system performance (e.g. to minimize the total travel time) by choosing the 

optimal tolls for a subset of links, within realistic constraints and subject to the 

dynamic traffic assignment. The optimal toll design problem can be seen as a bi-level 

problem where on the upper level the road authority determines tolls on the links 

while the travelers on the lower level react to these tolls and adapt their travel 

behavior accordingly (see Fig.1).  

Considering the framework of the classical DTA model (see e.g. [12]), the 

research aim is to determine which extensions and modifications of classical DTA 

model are needed for capturing impacts of road pricing. If road pricing is imposed on 

only a subset of links and not to all links, travelers could decide, on the one hand to 

change routes and travel on non-tolled routes or less tolled routes. On the other hand, 

if a toll level is dependent on a certain period of the day, travelers could be better off 

by changing their departure time and travel earlier or later. 
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Fig.1. Conceptual framework for dynamic optimal toll design problem in dynamic 

traffic networks with heterogeneous users 

 

From Fig.1 we can distinguish three different submodels: The dynamic 

network loading (DNL) model, the route and departure time choice (RDC) model, and 

the road-pricing (RP) model. The DNL and route and departure time choice models 

combined constitute the DTA model at the lower level. DNL simulates propagation of 

traffic along available routes in the network giving as a result dynamic link travel 

costs, travel times, and flows. The route and departure time model takes individual 

travel behavior into account in which travelers aim to individually minimize their 

travel costs, yielding dynamic user equilibrium. While the DTA model captures 

traveler’s behavior, the road-pricing model captures different influences on that 

behavior. Given (time-varying) tolls as an element of the route travel cost function, 

one can consider the different impacts of variable tolls on the traveler’s behavior. The 
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aim of solving the road-pricing problem is to find an optimal space-time pattern of 

tolls over the whole network  (e.g. minimize the total travel time of all network users). 

More about the problem definition and the theoretical framework can be found in 

[13]. 

 

4. Mathematical formulation of the optimal toll 
design problem in dynamic networks  
Let  denote a transportation network consisting of a set of nodes  

and a set of links 

{ ,N AΩ = } N

A . Each origin-destination pair ( ,  is defined by an origin 

 and a destination 

)r s

r R N∈ ⊆ .s S N∈ ⊆  One or more routes rsp P∈  may exist between 

origin-destination (OD) pair  Every route p is comprised of one or more links 

.  We use a discrete time formulation in which the whole studied time period T is 

divided into a certain number of small time intervals, denoted by t. We assume that 

different user classes m are present on the network, each class having its own 

sensitivity to time and cost expressed by its value of time. Let the set of user classes 

be defined by M. The total travel demand from each origin r to each destination s per 

user class m is given by .  The set of departure times is denoted by  

( , ).r s

a A∈

rs
mD .K T⊆

As mentioned before, the proposed modeling framework contains three major 

components, that is, the DNL and RDC model, together forming the DTA model, and 

the RP model  (see Fig.1). These components are interrelated to find the solution of 

the dynamic toll design problem.  
 

4.1 DTA Model – Lower level of the problem 

The DNL component is formulated as a system of equations expressing link 

dynamics, flow conservation, flow propagation, and boundary constraints. In this 

paper, we adopt the DNL problem formulation described in [14]. A discrete choice 

model describing the combined route and departure time choice as a function of travel 

time and travel cost will formulate the RDC component. In this section we 

concentrate on the formulation of the RDC component. 

In a discrete choice model the travelers aim at maximizing their utility by 

choosing their subjective optimal route and departure time. We assume that travelers 
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consider the generalized travel costs of choice alternatives when making a decision. 

Let  denote the utility of user m when this user selects route p and departure 

time k for traveling from origin r to destination s. Furthermore, let c  denote the 

corresponding generalized travel costs for this user. Then the utility function can be 

written as 

( ,rs
mU p k )

m

( )rs
pm k

( , ) ( ) ( ),rs rs rs
m pm pU p k c k kε= − +

( )rs
pm kε

     (1)

    

where  is a random term describing the subjective unobserved effects. Note that 

the generalized costs are a disutility since travelers are assumed to maximize utility, 

hence minimize travel costs. 

In existing models describing route choice behavior, the dynamic generalized 

travel costs  usually only consist of the (user-class generic) actually experienced 

route travel times We will add several additional elements to the cost function, 

namely (a) an element for the (dynamic) road-pricing toll, (b) a user-specific value of 

time (VOT), and (c) penalties for deviating from a preferred departure and arrival 

time. Adding the toll makes sure that travelers respond to toll strategies, adding the 

penalties enables departure time choices, and adding the VOT yields that tolls and 

travel times are additive. Including all these elements yields the following generalized 

cost function: 

( )rs
pmc k

( ).rs
p kτ

N
tolltravel time penalty deviation penalty devation

preferred departure preferred arrival

( ) ( ) ( ) ( ) ,rs rs rs rs rs rs
pm m p p pc k k k k k kα τ θ β ζ γ τ ξ= + + − + + −

��	�
 ��	�
 ���	��

     

(2) 

where mα  is the VOT for user m,  is the toll to be paid for route p when 

departing at time k, 

( )rs
p kθ

rsζ  and rsξ  are the preferred departure and arrival times, 

respectively, while β  and γ  are parameters for the penalties for early/late departure 

and arrival. Note that mα  is the only class-specific element of the cost function. For 

simplicity sake, we only consider here different classes in terms of travelers having 

different VOT’s. Extensions to more complex class definitions are straightforward. 

The exact specification and calibration of these cost functions are subject to research 

in a parallel study (see [10]). The tolls  are input from the RP model component. 

The route travel times  can be computed from the output of the DNL component 

(rs
p kθ )

(rs
pτ )k
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that provides dynamic link flows and link travel times ( )a tτ  for each link a and each 

time t, which is merely a sum of consecutive dynamic link travel times: 

( ) ( , ) ( ),rs rs
p ap

a p t

k k tτ δ
∈

=∑∑ a tτ               (3) 

 

where  is a dynamic route-link incidence indicator which equals one if a 

traveler will at time t reach a on route p from r to s when departing at time k, and is 

zero otherwise. The route tolls  may have a similar additive structure although  

this is not necessary. In case the dynamic route tolls are additive (e.g. a road pricing 

strategy where travelers are independently tolled each time they enter a new road 

segment), the tolls can be computed by adding the appropriate dynamic link tolls 

( , )p
a k tδ

( )rs
p kθ

( )a tθ , i.e. 

( ) ( , ) ( ).        rs rs
p ap a

a p t

k k t tθ δ θ
∈

=∑∑             (4) 

Various specifications of a discrete choice model can be derived by assuming 

different joint probability distribution functions for the random terms  in 

Expression (1). Here we assume these random terms to be identically and 

independently extreme value type I distributed yielding a multinomal logit (MNL) 

model for the simultaneous route and departure time choice.  The probability of 

choosing alternative route p and departure time k among all other alternatives can then 

be expressed as follows: 

( )rs
pm kε

(rs
pm kψ )

( )
( )

exp ( )
( ) ,

exp ( )
rs

rs
pmrs

pm rs
pm

k Kp P

c k
k

c k

µ
ψ

µ
∈∈

−
=

−∑ ∑
      (5) 

where µ is a scale parameter. Equation (5) defines a simple discrete choice model 

while more sophisticated models may be used to overcome possible problems with 

e.g. overlapping (route) alternatives. For more details we refer to [8].  

Given  the proposed route and departure time choice behavior we can define 

the dynamic stochastic user-equilibrium equilibrium (SUE) state in the DTA model. 

As an extension of Wardrop’s equilibrium law, we define this equilibrium as the state 

in which no traveler thinks that he/she can decrease his/her generalized travel cost by 

unilaterally changing routes or departure time. It can be shown that this equilibrium 
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state can be found by solving an equivalent variational inequality (VI) problem, see 

e.g. [16]. In [17] the VI problem for the dynamic SUE is formulated as following. 

Find dynamic and class specific route flow rates ( )rs
pmf k  such that  

( )
( )

( ) ( ) ( ) 0,     ( ) ,
rs

rs rs rs rs
pm pm pm pm

rs RS k K m Mp P

Q k f k f k f k F
∈ ∈ ∈∈

⋅ − ≥ ∀ ∈∑ ∑∑∑
    

(6) 

where ( )rs
pm kQ  is defined as  

( )( ) ( )
( ) ( ) .

( )

rs
pmrs rs rs rs

pm pi pm m rs
pm

c k
Q k f k k D

f k
ψ

∂
= −

∂
                (7) 

The generalized travel cost  is a function of the route flow rates ( )rs
pmc k ( )rs

pmf k  since the 

route flows determine the link conditions in the DNL model and in return these 

determine the travel times and therefore the travel costs. The set F in Expression (6) 

defines the set of feasible route flow patterns that satisfy the flow conservation 

constraints (travel demand should be satisfied) and nonnegativity constraints, i.e. 

( ) | ( ) , ( ) 0 .rs rs rs rs
mp pm m mp

k p
F f k f k D f k

 
= = 


∑∑ ≥
                    

(8) 

 

4.2.Road Pricing (RP) Model – Upper level of the problem 

 
Tolls can be introduced as periodical time varying on a specific link, in 

contrast to uniform tolls or truly dynamic tolls. It should be noted that for the road 

authority different objective functions can be chosen depending on the aim of the toll 

strategy (e.g. to minimize the total travel time on the network, to maximize social 

benefit, or to maximize toll revenues, etc.) subject to some constraints on toll levels. 

For our experiment, minimization of the total travel time on the network is chosen. 

Objective function Z describes the total travel time on the network to be minimized, 

depending on the time-varying link toll values [ ]( ) :a tθΘ ≡  

( ) ( )

min ( ) ( ) ( ),  
rs

rs rs
p mpH rs RS k K m Mp P

Z k f kτ
Θ∈

∈ ∈ ∈∈

Θ = ∑ ∑ ∑ ∑            (9) 

where ( )rs
pmf k  are the equilibrium route flow rates and ( )rs

p kτ  are the corresponding 

equilibrium route travel times, both depending on the link toll levels Θ  The set H .
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defines the set of feasible toll levels, which in our paper consists of (time-specific) 

upper and lower bounds  and  on the toll levels, and of a definitional 

constraint assuming additive toll values: 

( )a tθ −

( ), rs
a

( )a tθ +

k t
tθ ∑∑| ( ) ( ) ( ) ( , ) ( )rs

a a p ap aH t t k k t tθ θ θ δ θ− + = Θ ≤ ≤ = 
                

(10) 

Since a second-best tolling strategy is followed in this paper, some links may not be 

tolled. If a link is not tolled, both the upper and lower bounds for these links are set to 

zero for all time periods.  

For each evaluation of the objective function Z a VI problem has to be solved 

at the lower level. The bi-level optimization problem defined by Expressions (6) and 

(8) can also be written as a single level optimization problem using a mathematical 

program with equilibrium constraints (MPEC) problem formulation in which the 

inequalities in expression (6) are included into the set of constraints of optimization 

problem (6), see e.g. [18], [19]. 

The complexity of the problem defined above is NP-hard. In [20] it is already 

mentioned that bi-level problems are in general NP-hard and in [21] that even single 

agent problems are NP-hard, already with only a single commodity.  

5. Solution approach  

 
Each component of the optimal toll design problem can be solved using 

various types of algorithms. The solution algorithm for the DNL model we adopt 

stems from [12]. For the RDC equilibrium model a descent algorithm using the 

method of successive averages (MSA) is implemented. Because of the complexity of 

the whole problem we aim to solve it for the simplest case in order to examine the 

shape and the properties of the objective function to be minimized (non-linearity and 

non-convexity). For this purpose we use a simple grid-search procedure in order to 

solve the RP model.  

The outline of the complete algorithm is as follows.  The algorithm starts with 

specifying the full grid of considered decision values (tolls) satisfying the constraints. 

The algorithm starts with an initial feasible price vector satisfying the lower and upper 

bounds of the tolls. In each iteration the algorithm finds a user equilibrium solution 

based on the current toll levels and sets new tolls that can potentially decrease the 

objective function Z described in Equation (9). Because the algorithm is a grid search 
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method it stops after all feasible toll values have been considered. More sophisticated 

algorithms may be used, e.g. to compute the gradients to find new tolls (see in [22]). 

More advanced algorithms will be the focus in the next step of our research.  

The two-stage iterative grid-search procedure for the optimal time-varying toll 

problem with DTA (including joint route and departure time choice) can be outlined 

as follows: 

Begin Outer Loop: PRICING 

 

Step1: Initialization  

Specify set of grid points to be calculated; Determine initial feasible solution for time-

varying toll values satisfying the lower and upper bounds; Assume an empty network 

and free flow traffic conditions; Set n : 0.=  

 

Step 2: Set next toll combination from the grid 

Begin Inner loop: DTA 

 

Step 3a: Compute dynamic route costs 

Compute travel costs  using Equation (2). ( )rs
pmc k

Step 3b: Compute new intermediate route flows 

Determine the new intermediate dynamic route flow pattern ( ) ( ) ,rs rs rs
mp mp mf k kψ=� D  

using Equation (5). 

Step 3c: Flow averaging  

Use the MSA method to update the route flow rates:  

( )( ),( ) ,( ) ,( ) ,( )1
1( ) ( ) ( ) .rs n rs n rs n rs n

pm pm pm pmnf k f k f k f k+= + −�  

Step 3d: Perform DNL 

Dynamically load ,( ) ( )rs n
pmf k  onto the network. 

Step 3e: Convergence of the lower level  

If the duality gap is sufficiently small, go to Step 4, otherwise return to Step 3a. 

End Inner Loop 

Step 4: Compute objective function 

Compute the objective function in Equation (9). 
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Step 5: Termination of the algorithm of the upper level 

If all toll combinations are explored, then the algorithm is terminated. Otherwise, set 

 and return to Step 2a.  :n n= +1

End Outer Loop 

Performing this simple iterative procedure, we explore all the possibilities for 

all toll level combinations and find the minimum of the objective function. Regarding 

the convergence of this algorithm, the inner loop using the MSA procedure typically 

converges to an equilibrium solution, although convergence cannot be proven. In the 

outer loop the whole solution space is investigated using a grid search (yielding a 

finite number of solutions that are evaluated). For practical studies this procedure will 

be infeasible, but for the purpose of analyzing the nature of the problem and the shape 

of the objective function this approach is preferable. 

6. Experimental results 

The solution procedure proposed in the previous section has been applied to a 

small network example shown in Figure 2.  
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Fig. 2. Example: network description and route composition. 

 

The network consists of one OD-pair connected by two paths. All three links 

have identical properties with a free flow travel time of 1 time period. Thus without 

congestion and tolls, route 2 is more attractive for the travelers than route 1. In the 

experiment we investigate the potential savings in total travel time if tolls are imposed 

to route 2 only, which means tolling just link 3. Two user classes are distinguished 
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with different VOT’s. The total travel demand from node 1 to node 3 is 86 of which 

50% high VOT travelers and 50% low VOT travelers. The following parameter values 

are used: 1 10,α =  2 15,α =  0.8β = , 2γ = , 5,rsζ =   and 10,rsξ = {1, ,15}.K = …

3 3(7)

 Considering 

the preferred departure time and arrival time it can be expected that most travelers 

prefer to travel between periods 5 and 10, hence congestion is likely to occur between 

those periods. Therefore, a tolling strategy is used that link 3 will be tolled (only) on 

time periods 7, 8, and 9. For simplicity we assume that the toll on periods 7 and 9 are 

identical, such that two toll levels need to be determined: 1(9) 3θ θ= =θ  and 
2

3 3(8) .θ θ=  

1
3θ

2
3θ 1

3θ

2
3θ

Z

a) b)
1
3θ

2
3θ 1

3θ

2
3θ

Z

a) b)

 

Fig. 3. The resulting objective function values for the optimal toll design problem  

 

Fig. 3(a) shows the resulting shape of the objective function that corresponds 

to the different toll levels. The toll values have been divided into a grid of possible 

values and the objective function has been calculated for all the values of this set. For 

all toll levels the lower bound is zero, while the upper bounds for 1
3θ  and 2

3θ  are 12 

and 30, respectively. From Fig. 3(a) we can conclude that the objective function is 

non-convex. Fig. 3(b) indicates the minimal value of the function and corresponding 

toll levels. We can conclude that the optimal tolls to be applied in time periods 7 and 

9 are while the optimal toll in time period 8 is . The resulting total 

travel time is Z=210 without tolls (

2
3 14.8θ = 1

3 8.5θ =

1 2
3 3 0θ θ= = ) while being Z=170 for the optimal tolls 

(Fig. 3(a)). 

The results corresponding to the situation with optimal toll values are plotted 
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in Fig. 4. DTA convergence based on a dynamic duality gap function is provided in 

Fig. 4(a). The optimal toll levels are provided in Fig. 4(b), and the , 

respectively. We can observe different dynamic route flow patterns for different user 

classes. We can observe in Fig. 4(e) that route 2 is not used in time periods 7, 8, 9 for 

travelers with low VOT. This is because of the high tolls (route costs) imposed to 

these times periods (Fig. 4(c)); hence travelers are shifted to non-tolled time periods. 

It is also the reason for such high flows in time periods 10, 11, and 12 (Fig. 4(e)). For 

the travelers with high VOT of tolls, route 2 is not used only in time period 8 (Fig. 

4(f)). This is because of high route costs imposed to this time period (Fig. 4(d)). As 

expected, the travelers with high VOT can afford to pay higher travel cost and on time 

periods 7 and 9 they don’t change their route while the travelers with low VOT are 

pushed off in these time periods. 

1
3 8.5θ = 2

3 14.8θ =
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Fig. 4.  Dynamic route cost and route flow pattern of both user classes 

 

We can conclude that with increasing the toll some users are pushed from the 

congested route and time period to the low congested routes and time periods leading 

to the decrease of the total travel time until an optimal value is reached. 
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7. Conclusions 

The dynamic road-pricing problem is formulated as a bi-level programming 

problem, with the road authority (on the upper level) setting the tolls and the travelers 

(on the lower level) responding by changing their travel decisions. The lower level is 

formulated and solved using a user-specific variational inequality problem (VIP) 

while the whole problem is formulated using the MPEC method. Second-best tolling 

scenarios are applied imposing tolls only to a subset of links on the network. Joint 

route and departure time choice is modeled because tolls will influence not only route 

but also departure time choice of travelers. Up to now, a simple procedure (grid-

search method) is used to indicate optimal tolls that should be applied in order to 

reach the objective of the road authority. Further, it demonstrates that time-varying 

pricing may lead to savings in the total travel time compared to the no-toll situation. 

There does not appear to be any simple solution of the problem time-varying 

pricing in dynamic traffic networks for real-size networks. The non-linear and non-

convex objective makes it difficult to find an (global) optimal solution. However, it is 

possible to find the optimal toll values for small hypothetical networks, as we 

demonstrate in this paper. 

We believe that for finding a global solution on larger networks a more 

appropriate global search algorithm (e.g. genetic algorithm) should be developed. For 

cases with overlapping routes better choice models can be used. 
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