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We study the impact of information on risk averse drivers who maximize their von Neumann-
Morgenstern expected utility (rather than minimizing expected travel time). For two routes in
parallel, equilibrium travel times depend on the distribution of risk aversion as well as on provi-
sion of information. Besides the (potentially inconsistent) mean variance model used so far in
transportation, we consider three other standard utility functions. Interestingly, we find that opti-
mal route choice may depend on global factors (and not only on local traffic conditions). Finally,
we study the benefit of information according to the level of risk aversion.
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INTRODUCTION
Congestion and associated time loss represent a very severe problem in many cities. Increasing car ownership
tends to deteriorate traffic conditions. This fact is very well documented, contrarily to another dimension,
which is as important, but has received little attention. This second source of user cost, which results from
travel time variability, is often referred to as non recurrent congestion. Non recurrent congestion represents
a large fraction of congestion in urban areas. In this case, besides average travel time, drivers incur an
additional cost due to the fact that congestion (and therefore travel time) are unpredictable. For example,
simulation experiments which were performed with the dynamic traffic simulator, METROPOLIS, suggest
that the user cost associated to congested time in Ile-de-France (Paris area and the surroundings) is of the
same order of magnitude as the cost associated to the variability of travel time (see de Palma and Picard,
2004a).
Much research has been devoted to the measure of the impact of information on congestion (see, for example,
Levinson, 2003 or Zhang and Verhoef, 2004). These results show that ITS systems do decrease the average
level of congestion, but that the impacts depend on a large variety of factors, such as the structure of the
demand or the type of networks involved. The majority of those results are based either on simulation
experiments or on laboratory experiments (see, e.g., Abdel-Aty et al., 1994). We propose here a third
avenue of research based on analytical methods, which explicitly introduces a key element for the analysis
of information: the individual level of risk aversion.
The idea is simple: the majority of drivers dislike travel time variability because they do not like arrival
time variability: a random arrival time at destination makes the planning of a business trip more difficult
or the appointment with a doctor more costly (if one wishes to be sure not to miss the appointment). The
users are prepared to pay in order to reduce the variability of travel time: this corresponds to the willingness
to pay to avoid risk. Noland and Small (1995) also use the term VOR for Value of Reliability (which is an
additional component to the user generalized cost, with respect to travel time cost). The same phenomenon
takes place on the stock market, since the average return of a stock is larger than the return on money
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market (see Prigent and Toumi, 2004 and Gollier, 2001). The difference between these two returns is an
increasing function of the level of risk aversion. Interestingly, risk aversion not only characterizes human
being, but also animals like rats, who are tested when facing safe and risky route choices (see Kagel and
Roth, 1995).
The analysis that we present here begins with the choice of an individual selecting between two uncongested
routes, one is deterministic and the other is random. The shortest route is also the risky one, so that there
is no universally better route: the risk neutral drivers (who ignore travel time variability) will prefer the
risky route and the drivers who dislike enough risk will agree to choose the safe route, even though the travel
time on this route is larger than the expected travel time on the other route. This is the price to pay for
certainty. Note that Arnott, de Palma and Lindsey (1991, 1996) have shown that, theoretically, the provision
of information may have a negative impact on welfare. This last issue is not analyzed in this paper.
We then extend the analysis by introducing congestion and by considering that the travel time on each route
depends on the number of drivers selecting this route. In other words, travel time is uncertain on the risky
route but also depends on road occupancy. The equilibrium of this system is not given by the Wardrop
principle because this principle does not incorporate travel time variability. The idea is then to uncover
a drivers’ preferences structure, which incorporates travel time variability. Noland and Small (1995) and
Noland, Small, Koskenoja and Chu (1998) have introduced and estimated a generalized cost function which
is the weighted sum of the expected travel time and of the variance of travel time. This is the Mean-Variance
model that we consider in this paper. However, we show that this model may be inconsistent, a point which
has been disregarded in the literature till now. We also consider three other standard formulations (utility
functions). When the travel time is deterministic, the maximization of the utility function is the same as
the minimization of the travel time, so that the principle of expected utility maximization, that we use in
this paper, generalizes the standard Wardrop principle in a non trivial way.
The main objective of this paper is to study the impact of information, when the capacities of the roads are
uncertain. We compare two extreme cases: (1) the drivers have no information (but they know the statistical
laws which govern from day to day traffic conditions), and (2) the drivers know, beforehand, the level of
capacity on each route (and in this case the equilibrium is given by the standard Wardrop principle). The
three main questions we address in this paper are then: (1) how are the travel times on the different routes
modified with the provision of information? (2) How do the travel times incurred by different users (which
differ by their levels of risk aversion) vary as the result of the provision of information? And (3) how is the
benefit from the provision of information distributed across the population, heterogeneous with respect to
risk aversion?
The paper is organized as follows: in Section 1, we introduce the main assumptions (concerning the road
systems and the drivers’ preferences), as well as the notations used in the paper and results in the no
congestion case, on which the remaining sections rely. In Section 2, we treat the case when users are fully
informed on the road conditions before they make their route choice decisions. In Section 3, we treat the
other polar case, when the users have no information about road conditions, and analyze how endogenous
congestion modifies the impact of the probability of bad traffic conditions on route choice. In Section 4, we
compare the two regimes (no and full information) and study the impact of information on travel time, for
the different classes of users. Section 5 concludes the paper. Proofs are partially relegated to the Appendix.

1 CONTEXT AND ASSUMPTIONS

1.1 Definitions and notations

We consider N drivers travelling from a common origin to a common destination. Each user has to choose
between a safe route, denoted by S, with a deterministic travel time tS and a risky route, denoted by R,
with a travel time TR which depends on the state of the nature.
We consider two states of nature: good and bad. For example, the road capacity could be high (good state)
or low (bad state). In this latter case, the capacity could be reduced given the occurrence of a significant
accident or given a road repair. The probability of the bad state of the nature is denoted by p ∈ ]0; 1[. This
probability is assumed fixed and exogenous. Moreover, this probability is common knowledge (that is known
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by all drivers) when the state of the nature is unknown. The upper script denotes the state of the nature:
“−” for the good state and “+” for the bad state, so that P (TR = t−) = 1− p and P (TR = t+) = p, where
t− (resp. t+) denotes the travel time on the risky route in the good (resp. bad) state of the nature. Travel
time on route j may depend on the (endogenous) number nj of users who choose route j, j = R,S. The
total number of users N = nR + nS is fixed and exogenous. This assumption of inelastic total demand is
rather realistic in the case of out-of-town week-end trips, or commuting in the short run.
We introduce two assumptions concerning travel time functions, which guarantee, as shown below, the
existence of interior equilibrium solutions.

Assumption 1 Travel time tS (nS) is continuous and strictly increasing in traffic volume on route S, nS.
On good days, travel time on route R, t−, is constant. On bad days, travel time t+ (nR) is continuous and
strictly increasing in traffic volume on route R, nR.

0

2 0

4 0

6 0

8 0

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8 0 0 0 9 0 0 0 1 0 0 0 0
T ra ffic  o n  R

Tr
av

el
 ti

m
e 

(m
in

ut
es

)

Tra ve l t im e  o n  S Tra ve l t im e  o n  R ,  b a d  d a y s Tra ve l t im e  o n  R ,  g o o d  d a y s E x p e c te d  t ra ve l t im e  o n  R

T ra ffic  o n  S
1 0 0 0 0 01 0 0 02 0 0 03 0 0 04 0 0 05 0 0 06 0 0 07 0 0 08 0 0 09 0 0 0

t+(N )

t-

t+(0 )
E [T R(0 )]

E [T R(N )]

tS (N )

tS(0 )

Figure 1: Travel times on the two routes, good days and bad days

The hypothesis that t− is constant simplifies computations, but it is by no means essential for our analysis.
It corresponds to an infinite capacity (or, at least, a capacity sufficiently high that free-flow travel can
be maintained). Assumption 1 is illustrated in Figure 1. Traffic on route R corresponds to the usual
horizontal axis, whereas traffic on route S corresponds to the reversed axis. Assumption 2 below implies
that the decreasing solid curve representing travel time on route S crosses the increasing dash-dotted curve
representing travel time on route R bad days, but that these two curves lie above the dotted horizontal line
representing travel time on route R good days.

Assumption 2 The following inequalities hold:

t+ (0) > t− (2a)

tS (0) > t− (2b)

tS (0) < t+ (N) and tS (N) > t+ (0) . (2c)

Assumption 2a means that, on route R, bad day travel time is larger than good day travel time when route R
is unused and therefore (according to Assumption 1) whatever the traffic: t+ (nR) > t−, ∀ nR, 0 ≤ nR ≤ N .
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Similarly, Assumption 2b implies that travel time on the safe route is always larger than good day travel
time on the risky route, whatever traffic volumes: tS (nS) > t−, ∀ nS , 0 ≤ nS ≤ N . Finally, Assumption 2c
implies that, on bad days, no route dominates the other (that is no route is preferred to the other whatever
the distribution of traffic between the two routes).
The first and second moments (expectation E (TR) and variance σ2 (TR)) of travel time on route R can be
computed easily given the properties of the binomial distribution:

E (TR) = pt+ (nR) + (1− p) t−

σ2 (TR) = p (1− p)
£
t+ (nR)− t−

¤2
,

see de Palma and Picard (2004b) for details. Their results are presented for symmetric deviations of travel
time on route R. The correspondence between their symmetric notations (∆, δ, τ) and the endogenous
quantities (t−, t+ (nR) , tS (nS)) (conditional on traffic volumes) is given in Appendix 6.1.

Assumption 3 Expected travel time on route R is not larger than travel time on route S:

pt+ (nR) + (1− p) t− ≤ tS (N − nR) .

Note that Assumptions 1, 2b and 2c imply Assumption 3 when nR = 0. By contrast, Assumption 2c implies
that Assumption 3 does not hold when nR = N and p = 1. By continuity, Assumption 3 does not hold when
nR and p are large enough. Assumption 3 therefore means that there is not too much traffic on the risky
route (we restrict attention to the part on the left of the vertical line on Figure 1).

1.2 Users’ preferences

Users’ preferences are represented by a utility functions UV
¡
t; θV

¢
, which is decreasing in travel time t

and where θV > 0 denotes the risk aversion parameter. Each user chooses the route which maximizes her
expected utility UV

¡
tS ; θ

V
¢
on route S or EUV

¡
t; θV

¢
= pUV

¡
t+; θV

¢
+ (1− p)UV

¡
t−; θV

¢
on route R.

This corresponds to the von Neumann-Morgenstern expected utility framework (see, e.g., Gollier, 2001).
We envisage four different (expected) utility functions V = MV,MS,CR,CA for Mean-Variance, Mean-
Standard deviation, Constant Relative Risk Aversion (CRRA) and Constant Absolute Risk Aversion (CARA),
respectively, as specified below:

EUMV
¡
TR; θ

MV
¢
= −E (TR)− θMV σ2 (TR) ,

EUMS
¡
TR; θ

MS
¢
= −E (TR)− θMSσ (TR) ,

UCR
¡
t; θCR

¢
= −t1+θCR/ ¡1 + θCR

¢
,

UCA
¡
t; θCA

¢
=
£
1− exp ¡θCAt¢¤ /θCA.

(1)

The first two lines correspond to expected utility. The Mean-Variance expected utility could be obtained from
CARA utility with a normal distribution for travel time. However, the Mean-Standard deviation expected
utility corresponds to no explicit utility function. Risk neutrality corresponds to the limiting case θV → 0
for V = MV,MS,CR,CA. The risk aversion parameter θV is assumed to follow a continuous distribution
over an interval I, with I = R+ (unbounded case) or I =

£
0; θ̄V

¤ ⊂ R+ (bounded case). The bounded case is
more appropriate for Mean-Variance and Mean-Standard deviation preferences, which often impose an upper
bound on the risk aversion parameter. Indeed, de Palma and Picard (2004b) discuss potential inconsistencies
for the Mean-Variance and Mean-Standard deviation preferences (V = MV,MS). They show that when
the probability p of the bad state of the nature and/or risk when aversion parameter θV is too large, the
expected utility may be an increasing function of p, which violates rationality. Indeed, a “rational” user
would never select a dominated route, that is a route for which the probability p of a high travel time is
larger. Consistency requires the following:

Assumption 4 The risk aversion parameter θMV and the probability p of the bad state satisfy:

(2p− 1) θMV [t+ (nR)− t−] < 1 for MV preferences,

(2p− 1)
q
1 + (θMS)

2
< 1 for MS preferences

.
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Assumption 4 guaranties that expected utility is decreased when the probability p of the bad state is in-
creased. A sufficient condition for both inequalities to hold whatever θV > 0 is p ≤ 1/2, i.e. adverse traffic
conditions occur with a low enough probability. Moreover, note that the first inequality holds whatever
p ∈ [0; 1] when θMV < 1/ [t+ (nR)− t−]. According to Assumption 1, a sufficient condition for Assumption
4 to be true whatever p and whatever traffic on each route is θMV < 1/ [t+ (N)− t−]. In contrast, the second
inequality always imposes an upper limit on p, which is independent from traffic conditions.

1.3 Probability thresholds and risk aversion thresholds

This section sums up the computation of the threshold values when congestion nR is exogenous and re-
sulting travel times t−, t+ (nR) and tS (N − nR) are fixed. The presentation of Sections 1.3 and 1.4
builds on de Palma and Picard (2004b), where the interested reader will find details of the proofs for
Theorem 1 and Proposition 1, corresponding to their Propositions 4, 10 and 11. With exogenous conges-
tion and plausible assumptions, we can show (Theorem 1) that the risky route R is preferred to the safe
route S (R Â S) if and only if the probability p of the bad state of the nature is less than a threshold
p̃V
¡
t−, t+ (nR) , tS (N − nR) , θ

V
¢ ≡ p̃Vθ (nR) or, equivalently, iff the user’s risk aversion θV is less than a

strictly positive threshold value θ̃V (p, t−, t+ (nR) , tS (N − nR)) ≡ θ̃Vp (nR) (the threshold values can be ex-
pressed as functions of nR because the travel times t+ and tS depend on traffic nR). Moreover, the user is
indifferent between the two routes (R ≈ S) at equality. More precisely, we have:

Theorem 1 Assume Assumptions 3 and 4 hold. For the utility function V = MV,MS,CR or CA, there
exists a unique probability threshold p̃Vθ (nR) ∈ [0; 1] and a unique risk aversion threshold parameter θ̃Vp (nR) >
0, which is strictly decreasing in p, such that:

R Â S ⇔ p < p̃V
¡
t−, t+ (nR) , tS (N − nR) , θ

V
¢
= p̃Vθ (nR)

⇔ θV < θ̃V (p, t−, t+ (nR) , tS (N − nR)) = θ̃Vp (nR) .

R ≈ S ⇔ p = p̃Vθ (nR)⇔ θV = θ̃Vp (nR) .

(2)

Equivalently, the probability thresholds p̃Vθ is strictly decreasing in θV . For all the preferences envisaged,
more risk averse users are ready to incur lower probabilities for the largest travel time than less risk averse
users, which is in accord with intuition. The proof is left to the reader. It is similar to (but simpler than) the
one of Theorem 2 below. The above thresholds, which are specific to the utility function V , are computed in
Appendix 6.2 and the decreasing relationships θ̃V (p, .) are depicted in Figure 2. The parameters are t− = 10
min., t+ = 20 min., and tS = 15 min. According to Theorem 1, the user with preferences V chooses route R
below the corresponding curve (i.e. when θV < θ̃Vp ) and route S above the curve. A different scale was used
(from 0 to 14 on the right) for CRRA preferences (upper curve) since, for the chosen parameters (t−, t+ and
tS), the relevant values for the risk aversion threshold θ̃CR are far larger than for the other preferences. In
addition, under Assumptions 1 and 2b, for the four preferences envisaged, the risk aversion threshold goes
to infinity when p goes to zero, which means that all users prefer the risky route when the probability of
the bad state is low enough. This is also intuitive given Assumptions 1 and 2b. However, Figure 2 shows
that, for CARA preferences, a very low probability would be necessary for users with reasonable values of
risk aversion (say θCA around 1.5) to prefer the risky route.
Note that, if Assumption 3 does not hold, then all (risk neutral or risk averse) users prefer route S. With
the values considered for t−, t+ and tS , Assumption 3 holds iff p ≤ 0.5. This is why the four curves cross at
p = 0.5, θV = 0.

Theorem 2 Assume Assumptions 1, 3 and 4 hold. For the utility function V = MV,MS,CR or CA, the
risk aversion threshold parameters θ̃Vp are strictly decreasing in traffic nR on route R.

Proof. See Appendix 6.3.
Theorem 2 goes along intuition since more traffic on route R makes it less attractive compared to route S.
This theorem will be useful to get the equilibrium solution. It corresponds to the demand side, whereas (on
the supply side) endogenous traffic on route R is increasing with risk aversion θV , as shown in Section 3.
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Figure 2: Risk aversion threshold for the different preferences

1.4 Adding a fixed travel time on each route

We now present the effect of adding the same constant to each travel time, focusing on the differences
obtained with different utility functions. This point is crucial for road pricing, since (under the assumption
of constant value of time) it is equivalent to adding the same fixed cost on both routes. In the standard case
(deterministic travel times), this transformation has no impact on route choice in the sense that a driver
indifferent between the two routes before the change will remain indifferent between the two routes after
the change. As shown below, this result does not necessarily hold with random travel time and risk averse
drivers!
Proposition 1 deals with the impact of adding a fixed travel time segment to the network with two routes in
parallel. We find that such an additive expansion has no effect on route choice for some preferences, while
it tends to favor the risky route for other preferences.

Proposition 1 For an agent with MV , MS or CA preferences, route choice is unchanged when the same
constant travel time is added on each route.
Consider an agent with CR preferences who is indifferent between routes R and S. When a common travel
time µ > 0 is added on each route, she prefers route R.

With CRRA preferences, adding a common constant, µ, to both routes, tends to favor route R. If route R
was initially preferred to route S, then it is still preferred with the additional term µ. If route S was initially
preferred to route R, then there exists a unique threshold value µ̆ > 0 such that the user becomes indifferent
between the two routes when µ̆ is added to travel times on both routes. Proposition 1 is rather intuitive,
since the relative variability of travel time is reduced when adding a constant travel time. Users with CRRA
preferences, which are only concerned with the relative variability of travel times, therefore consider that
route R becomes less risky when adding a constant travel time.
Proposition 1 implies that the advice provided by traveller information systems may depend on global
variables such as the total length of the journey (instead of the travel time on the two routes only) and
should then be individual specific and global. It also implies, for example, that if a bottleneck occurs before
the decision node (between the safe and the risky route), this may affect route choice. This goes along basic
intuition (e.g. drivers fed up refuse to take another chance) but, strangely enough, such behavior is not
taken into account by current transport models. Finally, Proposition 1 implies that introducing the same
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toll on both routes may affect route choice (if users have CRRA preferences). Note however that the degree
of risk aversion for travel time may differ from the degree of risk aversion for money, which is out of the
scope of this paper.
In Section 2, we turn to more realistic assumptions, assuming that the travel time on a route depends
endogenously on the traffic on that route. However, in order to simplify computations, good day travel time
is assumed independent from traffic.

2 FULL INFORMATION (STATE OF THE NATURE KNOWN)

From now on, we assume that travel times on each route depend on the traffic on that route. We assume in
this section that, before they begin their journey, all users know the state of the nature. In this case, denoted
by full information, the drivers have access to information concerning accidents, or road repairs. In this way,
they know the value of road capacity and from that they are able to perfectly anticipate the value of travel
time (details of those calculations are provided below). With full information, travel time is deterministic
on both routes (but depends of course on the state of the nature). As a consequence, each driver chooses
each day the route which minimizes her travel time (this is because utility is a decreasing function of travel
time, so that maximizing utility amounts to minimizing travel time). At equilibrium, either both routes are
used and they have the same travel time or only the route with the smallest travel time is used.

2.1 Good days

First, we characterize the equilibrium when a good day (high capacity on the risky route) is announced.

Lemma 1 Let Assumptions 1 and 2b hold. On good days, equilibrium traffic on route R is N .

Proof. Assumptions 1 and 2b imply that, if good state of the nature is common knowledge, each user
prefers route R even though she anticipates that all users will choose it, since t− < tS (0). When the good
state of the nature is announced, the equilibrium entails n−R = N and n−S = 0.
On good days, there exists a unique (corner) equilibrium solution in the good state of the nature, for which
all users select route R. In that case, travel time is constant and equal to t−. Note that, the good days
equilibrium traffic (and hence travel time) depends only on the total number of users, N (and does not
depend on the congestion functions tS (.) and t+ (.), nor on users’ preferences).

2.2 Bad days

Next, we study the equilibrium split when a bad signal (low capacity on route R) is sent to drivers. The
existence and unicity of the equilibrium solution is assured whatever the functional form for congested travel
times.

Lemma 2 Let Assumptions 1 and 2c hold. On bad days, there exists a unique equilibrium traffic on route
R, which solves tS

¡
N − n+R

¢
= t+

¡
n+R
¢
, with n+R ∈ ]0;N [.

Proof. First note that there cannot be corner equilibrium solutions (nR = 0 or nR = N) because of
Assumption 2c. Second, at equilibrium (if any), the travel times on the two routes must therefore be the
same since they are both used. Finally, Assumptions 1 and 2c imply that there exists a unique number
n+R ∈ ]0;N [ which equalizes both travel times (and therefore corresponds to an equilibrium). It is given by
the solution to the equation tS

¡
N − n+R

¢
= t+

¡
n+R
¢
.

On bad days, there exists a unique (interior) equilibrium solution
¡
n+R, n

+
S = N − n+R

¢
. Note that, the bad

days equilibrium traffic (and hence travel times on both routes) depends only on the total number of users,
N and on the congestion functions tS (.) and t+ (.), but not on users’ preferences.
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When a bad state of nature is announced (common knowledge), each user anticipates the equilibrium¡
nR = n+R, nS = N − n+R

¢
. The equilibrium is stable in the sense that all users would prefer route R if

less traffic used R (nR < n+R) and all users would prefer route S if more traffic used R (nR > n+R). Lemmas
1 and 2 will be useful to study the equilibrium without information.
The optimal strategy can be interpreted as a mixed strategy where each user selects route R with probability
n+R
N and selects route S with probability N−n+R

N . An alternative interpretation is that n+R users deterministi-
cally choose route R and

¡
N − n+R

¢
users deterministically choose route S.

To illustrate the results, we consider a parametric case:

Assumption 5 On bad days, when nR drivers use route R, travel times are given by:(
t+ (nR) = (1 + nR/λR)

b τ+ on the risky route and
tS (N − nR) = (1 + (N − nR) /λS)

b τS on the safe route,

with τ+, τS , λR, λS and b > 0.

For that specification, τS and τ+ denote respectively the free flow travel times on the safe route and on the
risky route (bad days), and λj denotes the capacity on route j, j = R,S. Recall that, on the risky route
on good days, capacity is infinite and travel time is constant (equal to t−). Note that, with these parameter
values, Assumption 1 is trivially satisfied, since Assumption 5 implies Assumption 1. Assumption 2b then
corresponds to τS > t− and Assumption 2c corresponds to:

1/ (1 +N/λR)
b < τ+/τS < (1 +N/λS)

b . (3)

Note also that it is always possible to find parameters values τ+ and τS which meet the inequalities 3. With
the above specification, we can solve explicitly for the equilibrium solution described in Lemma 2. Under
Assumptions 2c and 5, bad day equilibrium traffic on route R is:

n+R =
h
1 +N/λS −

¡
τ+/τS

¢1/bi/ h¡τ+/τS¢1/b /λR + 1/λSi ∈ ]0;N [ .
Indeed, under Assumption 5, the bad day equilibrium traffic n+R solves the travel time equality condition:¡

1 + n+R/λR
¢b
τ+ =

¡
1 +

¡
N − n+R

¢
/λS

¢b
τS

⇔ n+R =
h
1 +N/λS − (τ+/τS)1/b

i
/
h
(τ+/τS)

1/b
/λR + 1/λS

i
.

Assumption 2c (which corresponds to Equation 3 in the example) ensures the existence of an interior solution
(i.e. that 0 < n+R < N).
Note that, under Assumption 5, the solution for bad day equilibrium traffic does not depend separately on
free flow travel time on each route (τ+ and τS), but only on the free flow travel time ratio τ+/τS . Bad day
equilibrium traffic n+R on the risky route R is increasing in the power index b iff bad day free flow traffic
on the risky route is larger than free flow on the safe route (τ+ > τS). The other comparative statics goes
along intuition: equilibrium traffic on route R is increasing in total traffic N and in the capacity λR on R
and decreasing in the capacity λS on the other route. The effect of free flow travel times τ+ and τS go in
the opposite direction. Equilibrium travel time, denoted by t+

¡
n+R
¢
, is given by:

t+
¡
n+R
¢
= tS

¡
N − n+R

¢
=
n
[λR + λS +N ]/

h¡
τ+
¢1/b

λS + (τS)
1/b

λR

iob
τ+τS ,

which is symmetric in R and S. As an illustration, with the following values of the parameters: p = 0.5, b =
4, N = 10, 000, τ+ = 20 min., τS = 15 min., t− = 10 min., λR = 25, 000, λS = 50, 000, equilibrium traffic is
n+R = 1, 991 (19.9%) when the bad state of the nature is common knowledge. Travel time is then 27.18 min.,
which represents a 81% increase on route S and a 36% increase on route R (compared to free flow travel
time on each route). This corresponds to the intersection of the solid and dash-dotted curves on Figure 1.
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3 NO INFORMATION (p ∈ ]0; 1[ KNOWN)

3.1 Introduction

Assume now that users choose their route without knowing the state of the nature. This corresponds to the
case where drivers have no access to a driver information system. However, they know the occurrence of
good and bad days. In other words, they all know the probability p of the bad state of the nature (which
is common knowledge). In this case, the solution is given by the unconditional number of users who select
each route. We will show below that the most risk averse users select route S, while the least risk averse
users select route R.
The standard solution provided in the literature assumes that all the users are risk neutral. In this case,
they all minimize the expected travel time. For an interior solution

¡
n0R, n

0
S = N − n0R

¢
, where n0R denotes

the no information equilibrium traffic with only risk neutral users, this means that

tS
¡
N − n0R

¢
= pt+

¡
n0R
¢
+ (1− p) t−, (4)

which is at the boundary of Assumption 3. Under Assumption 5, the solution n0R solves:£
1 +

¡
N − n0R

¢
/λS

¤b
τS = p

¡
1 + n0R/λR

¢b
τ+ + (1− p) t−.

Note that the above solution has no analytical solution in general (except in the case b = 1 or b = 2). Recall
that, under full information, the travel time on the good day is t− and that, on the bad days, it solves:

tS
¡
N − n+R

¢
= t+

¡
n+R
¢
> pt+

¡
n+R
¢
+ (1− p) t−. (5)

The inequality in 5 is implied by Assumptions 1 and 2a. Expressions 4 and 5 and Assumption 1 imply that
n0R > n+R. A similar argument holds for good day traffic under full information and shows that n

0
R < n−R.

Therefore, we have shown:

Proposition 2 Let Assumptions 1 to 2c hold and assume all users are risk neutral. On route R, equilibrium
traffic with no information is larger than bad day equilibrium traffic, and lower than good day equilibrium
traffic: n+R < n0R < n−R.

See Lemmas 1 and 2 for good day and bad day equilibrium traffic, respectively. When travel time is random
and users have different levels of risk aversion, their route choice depends on their level of risk aversion. We
discuss below the case where travel time is exogenous (which is the case from the user perspective) and later
on we endogenize the travel time.

3.2 Individual route choice decision

We first consider individual route choice when the travel times on both routes are given and constant from
the individual perspective. Note that if the population size N is large, then the impact of an individual
choice on congestion can be neglected, so travel times can be considered fixed and exogenous when solving
an individual program.
Each user chooses the route which maximizes her expected utility EUV

¡
t; θV

¢
(see Equations 1). Since travel

times are given, we can use the results obtained in Section 1.3, with exogenous travel times. In particular,
the threshold values for the risk aversion parameter, θ̃Vp of the individual indifferent between the two routes
are given in Appendix 6.2. Recall that θ̃Vp is decreasing in nR (see Theorem 2).
We consider a scaling factor θ̄V and a continuous distribution L over an interval I for the risk aversion
parameter θV in the case of V = MV, MS, CR or CA preferences. The distribution L is characterized
by the cumulative distribution function FL

¡
θV ; θ̄V

¢
> 0, ∀ θV ∈ I, with I = R+ or I =

£
0; θ̄V

¤ ⊂ R+. We
consider two distributions of risk aversion to illustrate our approach: L = U for the uniform distribution on£
0; θ̄V

¤
and L = G for the log-logistic distribution on R+ : FG

¡
θ; θ̄V

¢
= 1/

¡
1 + θ̄V /θ

¢
.
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Assumption 6 Users’ preferences are described by the utility function V = MV,MS,CR or CA; the risk
aversion parameter θV is distributed according to a continuous distribution L either over R+ or over a
compact interval

£
0; θ̄V

¤
included in R+. In the case of a bounded distribution, θ̄V > θ̃Vp (N).

Assumption 6 is necessary for an interior equilibrium to exist. Otherwise, all the users would select the risky
route when p is unknown, as shown below. Indeed, θ̃Vp (N) ≥ θ̄V would imply that θ̃Vp (n) ≥ θ̃Vp (N) ≥ θ̄V

for any n ≤ N and all users would select route R if Assumption 6 did not hold. Note that θ̃Vp (N) is a finite
number when p ∈ ]0; 1[, so no equivalent assumption is necessary in the case of an unbounded distribution.
In the remainder of this section, we consider that nR is endogenous and that preferences are described by
the (expected) utility V , with a risk aversion parameter θV distributed according to L. We then show
that there exists a unique equilibrium interior solution

³
nVR,L, n

V
S,L, θ̃

V
p

´
. The solution is such that, for

the equilibrium traffic on both routes
¡
nVR,L, n

V
S,L = N − nVR,L

¢
, there exists a unique value of risk aversion

parameter θ̃Vp
¡
nVR,L

¢
such that, according to conditions 2, the user with θV = θ̃Vp

¡
nVR,L

¢
is indifferent

between the two routes, the nVR,L users with a lower risk aversion choose route R and the nVS,L users with
a larger risk aversion choose route S. Note that, with a continuous distribution for users’ risk aversion
parameter, the probability to find such a user is zero, so no user should be concerned by the strict equality
and all users have a strict preference for one route. As a consequence, under Assumption 6, the number of
users corresponds to the integral of the density over an interval included in I:

nVR,L
³
θ̃Vp

´
= N

Z θ̃Vp

0

fL
¡
θ; θ̄V

¢
dθ = FL

³
θ̃Vp ; θ̄

V
´
.

Next we show that risk neutral users necessarily select route R and the most risk averse users necessarily
select route S. The route choice behavior of a risk neutral user is given by:

Lemma 3 Let Assumptions 1, 2b and 2c hold. With no information, risk neutral users choose route R.

Proof. We proceed by contradiction. Assume that risk neutral users choose route S, then conditions 2
implies that all users choose S, which implies nS = N and nR = 0. Assumption 2c then implies that route R
is preferred to route S in the bad state of the nature. Assumptions 1 and 2b imply that t− < tS (0) < tS (N),
so route R is preferred to route S also in the good state of the nature. Route R is therefore preferred to
route S whatever the state of the nature and all users should choose R, a contradiction.

Lemma 3 means that θ̃Vp (0) > 0, so FL
³
θ̃Vp (0) ; θ̄

V
´
> 0. Note that, by continuity, this result implies that

the least risk averse users select route R.
We have a symmetric result for the most risk averse users:

Lemma 4 Let Assumptions 1, 2b, 2c and 6 hold. With no information, the most risk averse users choose
route S.

Proof. Once again, we proceed by contradiction. Assume that the most risk averse users choose route R,
then Theorem 1 implies that all users choose R, which implies nR = N and θV > θ̃Vp (N) for all users.
This contradicts Assumption 6 when the distribution of θV is bounded. Consider now the case when the
distribution of θV is unbounded and note that, for the four utility functions considered, when nR = N,

EUV
¡
t; θV

¢− UV
¡
tS ; θ

V
¢ −→
θV→+∞

−∞

(or it is proportional to a function which tends to −∞, see the ψV (.) functions in Appendix 6.3). This is
because, according to Assumptions 2b and 2c, t− < tS (0) < t+ (N). Therefore, EUV

¡
t; θV

¢−UV
¡
tS ; θ

V
¢
<

0 when θV is large enough and route S is preferred to route R for some (large) values of risk aversion, a
contradiction.
Lemma 4 implies that θ̃Vp (N) < θ̄V in the case of a bounded distribution and θ̃Vp (N) < ∞ otherwise. In

both cases, FL
³
θ̃Vp (N)

´
< 1. Lemmas 3 and 4 show that, under the no information regime, there cannot
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be equilibrium corner solutions (each route is selected by some users at equilibrium). By continuity, and
using Theorem 2, we prove in Section 3.3 that there exist an interior equilibrium traffic nVR,L ∈ ]0;N [ and
an associated risk aversion threshold θ̃Vp

¡
nVR,L

¢
such that the nVR,L least risk averse users (θ

V < θ̃Vp
¡
nVR,L

¢
)

choose route R, the N − nVR,L most risk averse users (θ
V > θ̃Vp

¡
nVR,L

¢
) choose route S.

3.3 Equilibrium

We are now ready to study the equilibrium solution without information, which is given by:

Theorem 3 Let Assumptions 1, 2b, 2c and 6 hold. With no information, when the risk aversion parameter
θV is distributed according to L ¡θ̄V ¢, there exists a unique equilibrium traffic nVR,L ∈ ]0;N [, which solves
F−1L

¡
nVR,L/N ; θ̄

V
¢
= θ̃Vp

¡
nVR,L

¢
.

Proof. See Appendix 6.4.
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Figure 3: Equilibrium for MS preferences with uniform and log-logistic distributions for risk aversion

The solution for equilibrium traffic nVR,L is generally not explicit, but it can easily be solved numerically, as
illustrated in Figure 3 for the Mean-Standard deviation case. For the uniform distribution L = U ,

FU
¡
θ; θ̄V

¢
= θ/θ̄V = nR/N and θ = F−1U

¡
nR/N ; θ̄

V
¢
= θ̄V nR/N. (6)

This corresponds to the dash-dotted increasing straight line on Figure 3. For the log-logistic distribution
L = G,

FG
¡
θ; θ̄V

¢
=

1

1 + θ̄V /θ
= nR/N ⇔ θ = F−1G

¡
nR/N ; θ̄

V
¢
=

θ̄V

N/nR − 1 . (7)

This corresponds to the dotted increasing and concave curve on Figure 3. Equilibrium traffic is obtained by
inserting these expressions in the relevant line of Equation 14 or 15 in Appendix 6.2, in which tS and t+
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have to be replaced by their expressions as functions of nR = nVR,L. The (inverse) relation between nR and

θ̃MS
p (nR) (for Mean-Standard deviation preferences) corresponds to the decreasing solid curve on Figure 3.
For a uniform distribution and Mean-Standard deviation preferences, under Assumption 5 for the travel time
functions, Equation 6 inserted in the second line of Equation 14 gives:

¡
nR
N

¢
θ̄MS =

½h
1 + N−nR

λS

ib
τS − t− − p

∙³
1 + nR

λR

´b
τ+ − t−

¸¾
/
½p

p (1− p)

∙
τ+
³
1 + nR

λR

´b
− t−

¸¾
⇔
h
θ̄MS

p
p (1− p)nR/N + p

i
τ+ (1 + nR/λR)

b − τS [1 + (N − nR) /λS ]
b

−θ̄MS
p
p (1− p)t−nR/N + (1− p) t− = 0,

which results in a polynomial expression in nR, of order 1+ b when b is an integer. As an illustration, Figure
3 is obtained with the values of the parameters given at the end of Section 2. For the uniform distribution
U of risk aversion on the interval [0; 0.7] (θ̄MS = 0.7), the equilibrium without information is obtained for
nMS
R,U = 3, 437 and θ̃MS

p

¡
nMS
R,U
¢
= 0.241 (θMS < θ̃MS

p

¡
nMS
R,U
¢
for 34% of users). Note that θV > 1 for mean-

standard deviation expected utility would mean that the user is more sensitive to the variability in travel
time than to expected travel time, which would not be very realistic. This represents a congestion of 64%
on route S (from 15 min. to 24.57 min.) and of 67% (from 20 to 33.48 min.) on route R in the bad state.
The numerical results are slightly different for the log-logistic distribution of risk aversion with θ̄MS = 1. The
equilibrium without information is obtained for nMS

R,G = 3, 000 and θ̃MS
p

¡
nMS
R,G
¢
= 0.43 (θMS < θ̃MS

p

¡
nMS
R,G
¢

for 30% of users). This represents a congestion of 69% on route S (from 15 min. to 25.3 min.) and of 57%
(from 20 min. to 31.5 min.) on route R in the bad state.

3.4 Impact of the probability p on the risk aversion thresholds

The figures with endogenous congestion and travel times are significantly different from those obtained with
exogenous constant travel times, especially concerning the impact of the probability p of the bad state
of the nature, as illustrated in Figure 4 for Mean-Variance and Mean-Standard deviation preferences and
a uniform distribution for risk aversion. The solid curves represent the no information equilibrium risk
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Figure 4: Impact of the probability p on risk aversion threshold with and without endogenous congestion,
for MV and MS preferences
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aversion threshold with endogenous congestion. The dotted curve represents the risk aversion threshold for
a constant traffic corresponding to the equilibrium traffic when p = 0.5 (as in Figure 2), that is nMS

R,U = 3, 437
and θ̃MS

p

¡
nMS
R,U
¢
= 0.241 forMS preferences, and nMV

R,U = 2102 and θ̃
MV
p

¡
nMV
R,U

¢
= 0.105 forMV preferences

(with θ̄MV = 0.5). The dash-dotted curves are similar, with a probability p = 0.1. Note that, without
congestion, the risk aversion threshold is highly sensitive to the assumed constant travel times, especially in
the MS case. As expected, in both cases, the endogenization of travel time dramatically reduces the impact
of the probability p on the risk aversion threshold, and consequently on the distribution of traffic between
the two routes, since the bold curves are far flatter than the dotted and dash-dotted curves. With a very
low probability of bad state, most drivers would choose route R, which induces much congestion on route
R, thus reducing its attractivity.

4 COMPARISON OF THE TWO CASES (STATE OF THE NA-
TURE KNOWN OR NOT)

4.1 Travel time

We first generalize Proposition 2 when users have different levels of risk aversion (we still assume that all
users are either risk averse or risk neutral, i.e. there are no risk loving drivers, see Assumption 6).
Traffic depends on the state of nature and on information. When the state of the nature is unknown, the
equilibrium traffic nVR,L on the risky route lies between the equilibrium traffic n−R = N on the risky route in
the good state of the nature and the equilibrium traffic n+R on the risky route in the bad state of the nature.

Proposition 3 Assume that Assumptions 1 to 4 hold and that users’ preferences are described by the utility
function V = CR or CA, with a risk aversion parameter distributed according to L. Then, on route R,
equilibrium traffic with no information is larger than bad day equilibrium traffic, and lower than good day
equilibrium traffic: n+R < nVR,L < n−R.

Proof. See Appendix 6.5.
This result is rather intuitive. Less users are willing to use the risky route when bad state of the nature is
common knowledge than when the state of the nature is unknown: the least risk averse users are willing
to take their chance in the latter case. However, no similar result holds for MV or MS expected utility.
For those preferences, depending on the values of the parameters, equilibrium traffic on route R with no
information, nVR,L, may be either larger or lower than bad day equilibrium traffic n+R. As a counter-example,
consider the numerical values used at the end of Section 3.3, MV preferences and a risk aversion parameter
distributed uniformly on the interval

£
0; θ̄MV = 1

¤
. Then the no information equilibrium traffic for MV

preferences is nMV
R,U = 1, 622, which is less than bad day equilibrium traffic n+R = 1, 991. The case θ̄

MV = 0.5

developed in Section 3.3 led to the intuitive results nMV
R,U = 2, 102 > n+R.

The proof of Proposition 3 is based on utility computed for a given fixed travel time, not only on expected
utility. This proof does not hold for MV or MS expected utility because they do not come from a standard
utility function with a binary distribution for travel time. This is another source of inconsistency of MV
expected utility (in addition to the one pointed out before Assumption 4). It is not very plausible that
providing the information that traffic conditions are bad on one route may increase traffic on that route!
We therefore focus our attention from now on to "real" utility functions V = CR or CA. For the sake of
comparison, some results are also provided forMV orMS expected utility, but we choose parameters values
so that n+R < nVR,L < n−R.
The impact of information is usually measured by the difference in travel time before and after the provision
of information. We show below that although all users benefit from information, some users benefit from
travel time savings more than other users do. Later on, we will also examine the potential utility gains from
information provision. The impact of information on route choice and travel time for the least and most risk
averse users is summed up in Table 1 and discussed below.
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Route choice and travel time
State of the nature θV < θ̃Vp

¡
nVR,L

¢
θV > θ̃Vp

¡
nVR,L

¢
State unknown

good
bad

expected

R, t−

R, t+
¡
nVR,L

¢
pt+

¡
nVR,L

¢
+ (1− p) t−

S, tS
¡
N − nVR,L

¢

State known
good
bad

expected

R, t−

R ≈ S, t+
¡
n+R
¢

pt+
¡
n+R
¢
+ (1− p) t−

R, t−

R ≈ S, t+
¡
n+R
¢

pt+
¡
n+R
¢
+ (1− p) t−

Expected time gain p
£
t+
¡
nVR,L

¢− t+
¡
n+R
¢¤

tS
¡
N − nVR,L

¢− pt+
¡
n+R
¢− (1− p) t−

Table 1: Impact of information on route choice and travel time

When the state of the nature is unknown, the least risk averse users select the risky route and their travel
time is t− in the good state of the nature, t+

¡
nVR,L

¢
in the bad state of the nature, so their expected

travel time is pt+
¡
nVR,L

¢
+ (1− p) t−. The most risk averse drivers select route S and their travel time is

tS
¡
N − nVR,L

¢
= t+

¡
nVR,L

¢
whatever the state of the nature. When the state of the nature is known, both

types of users select route R in the good state of the nature, are indifferent between route R and route S in
the bad state of the nature and their expected travel time is t+

¡
n+R
¢
. The expected time gain is therefore

p
£
t+
¡
nVR,L

¢− t+
¡
n+R
¢¤
for the least risk averse users and tS

¡
N − nVR,L

¢−pt+ ¡n+R¢−(1− p) t− for the most
risk averse users.
We will now see that expected time gain is larger for the most risk averse users.

Proposition 4 Assume users’ preferences are described by the utility function V = CR or CA, with a risk
aversion parameter distributed according to L and that Assumptions 1 to 4 hold. Then expected travel time
decreases for all the users when information is provided. Moreover, travel time decrease is more significant
for the most risk averse users (θV > θ̃Vp

¡
nVR,L

¢
than for the least risk averse users (θV < θ̃Vp

¡
nVR,L

¢
).

Proof. See Appendix 6.6.
Most research on ITS focus on congestion and restrict their attention to expected travel time. This important
impact of drivers information systems is studied in Proposition 4, which shows that the most risk averse
users are (apparently) those who benefit the most from the provision of information (in terms of expected
travel time). However, we will see in the next section that this analysis provides a partial and potentially
misleading view, since it does not consider the cost of uncertainty (which can only be neglected when drivers
are risk neutral). Indeed, the benefit of information perceived by the least risk averse users is larger than
suggested by expected travel time since information also reduces travel time uncertainty for those users. We
show in next section that the impact of information is more ambiguous for the most risk averse users.
The aggregate impact of the provision of information is characterized by:

Corollary When users have CRRA or CARA preferences, information reduces aggregate expected travel
time.
Proof. This result is obvious since expected travel time is reduced for all users (see Proposition 4).
Aggregate expected time gain AETV is the weighted sum of travel time gained by the nVR,L least risk averse
users and by the

¡
N − nVR,L

¢
most risk averse users:

AETV = nVR,Lp
£
t+
¡
nVR,L

¢− t+
¡
n+R
¢¤
+
¡
N − nVR,L

¢ £
tS
¡
N − nVR,L

¢− pt+
¡
n+R
¢− (1− p) t−

¤
With MS preferences and with the parameter values used in the previous examples, expected travel time
with information is reduced to 18.59 min. (27.18 min. in the bad state and 10 min. in the good state).
Without information, expected travel time was 24.57 min. (for sure) for the most risk averse users and 21.74
min. for the least risk averse users (33.48 min. in the bad state and 10 min. in the good state).
Expected travel time reduction is 24.57 − 18.59 = 5. 98 min. for the 6, 563 most risk averse users and
21.74− 18.59 = 3. 15 for the 3, 437 least risk averse users. This represents a gain of 6, 563 ∗ 5. 98+ 3, 437 ∗ 3.
15 = 50, 073 min for the 10, 000 users, that is 5.01 min by user.



A. DE PALMA AND N. PICARD 15

4.2 Compensating variation

We now study how much time each user would be eager to pay for information. However, we have to be
more explicit in two dimensions: whether information is private or public (common knowledge), and what
is the reference point.

Lemma 5 Private information has no value when all other users are informed.

Proof. Consider the reference situation in which all users have access to information. Equilibrium travel
time is then t− on good days and t+

¡
n+R
¢
= tS

¡
N − n+R

¢
on bad days. If a driver were to deviate from

the equilibrium with costly information, she would choose route R. This is because, at the equilibrium with
traffic n+R, t

+
¡
n+R
¢
= tS

¡
N − n+R

¢
> t−, so EUV

¡
TR
¡
n+R
¢
; θV

¢
> UV

¡
tS
¡
N − n+R

¢
; θV

¢
for any uninformed

user, who would therefore choose route R. The value of private information in then zero because it does not
modify choices.
This result is rather intuitive since, when all users are informed, equilibrium is such that they are all
indifferent between the two routes in the bad state of the nature and they all strictly prefer the risky route in
the good state. Any user would then prefer the risky route when she does not know the state of the nature
whereas the others have access to this information.
We do not explore the value of private information when all other users are uninformed because equilibrium
would make no sense in that case. The case in which an endogenous fraction of users is informed is left for
future research. Here, we rather focus on the value of public information, and we consider:

Definition The compensating variation CV V
¡
θV
¢
corresponds to the time a user with preferences V and

risk aversion θV is ready to pay for public information.

With costly public information, equilibrium travel time is t+
¡
n+R
¢
= tS

¡
N − n+R

¢
on bad days and t− on

good days, so expected utility is:

EUV
¡
TR
¡
n+R
¢
+ CV V

¡
θV
¢
; θV

¢
= pUV

¡
t+
¡
n+R
¢
+ CV V

¡
θV
¢
; θV

¢
+ (1− p)UV

¡
t− + CV V

¡
θV
¢
; θV

¢
.
(8)

Without costly public information, equilibrium traffic is nVR,L and expected utility depends on individual
choice. Recall that, without information, the least risk averse drivers (θV < θ̃Vp

¡
nVR,L

¢
) choose route R and

get the expected utility

EUV
¡
TR
¡
nVR,L

¢
; θV

¢
= pUV

¡
t+
¡
nVR,L

¢
; θV

¢
+ (1− p)UV

¡
t−; θV

¢
, (9)

while the most risk averse ones (θV > θ̃Vp
¡
nVR,L

¢
) choose route S and get the deterministic utility

UV
¡
tS
¡
N − nVR,L

¢
; θV

¢
= UV

¡
tS
¡
N − nVR,L

¢
; θV

¢
. (10)

Proposition 5 The compensating variation CV V
¡
θV
¢
is given by:(

EUV
¡
TR
¡
n+R
¢
+ CV V

¡
θV
¢
; θV

¢
= EUV

¡
TR
¡
nVR,L

¢
; θV

¢
if θV < θ̃Vp

¡
nVR,L

¢
EUV

¡
TR
¡
n+R
¢
+ CV V

¡
θV
¢
; θV

¢
= UV

¡
tS
¡
N − nVR,L

¢
; θV

¢
if θV > θ̃Vp

¡
nVR,L

¢ . (11)

Assume that Assumptions 1 to 4 hold and that users’ preferences are described by the utility function V = CR
or CA. Then CV V

¡
θV
¢
is guaranteed to be positive and increasing in θV for the least risk averse users

(θV < θ̃Vp
¡
nVR,L

¢
), and decreasing in θV for the most risk averse users (θV > θ̃Vp

¡
nVR,L

¢
).

Proof. Equation 11 comes from the definition of CV V
¡
θV
¢
and from Equations 8 to 10.

Proposition 3 means that nVR,L > n+R, at least for CR and CA preferences. This implies that, for the
least risk averse users (who would choose route R without information), travel time is reduced in the bad
state of the nature and unchanged in the good state of the nature. Therefore, both the expectation and
the variability of travel time are reduced by information for the least averse drivers. This implies that the
benefit of information, and therefore the compensating variation, are strictly positive and increasing in θV
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for all the least risk averse users (θV < θ̃Vp
¡
nVR,L

¢
). By continuity, the compensating variation is strictly

positive for some of the most risk averse users.
The most risk averse users would switch from the safe to the risky route when public information is provided,
so information would increase the variability of their travel time (from 0 to a positive value) at the same
time as it decreases their expected travel time. This implies that the benefit of information, and therefore
the compensating variation, are decreasing in θV when θV > θ̃Vp

¡
nVR,L

¢
, and it may become negative for the

very risk averse users.
Note that Equation 11 holds for any preferences, although the remainder of Proposition is guaranteed only
for CR and CA preferences. Note also that EUV

¡
TR
¡
nVR,L

¢
; θV

¢
= UV

¡
tS
¡
N − nVR,L

¢
; θV

¢
when θV =

θ̃Vp
¡
nVR,L

¢
, so the two expressions of CV V

¡
θV
¢
converge at θV = θ̃Vp

¡
nVR,L

¢
. The compensating variation

for the different cases is computed in Appendix 6.7 and represented in Figure 5 (solid curves), together
with the expected travel time reduction (stair-shaped dash-dotted curves). Whatever the preferences, the
compensating variation exactly corresponds to the expected travel time reduction at θV = 0 (risk neutral
users).
Note that CV V

¡
θV
¢
is a piecewise linear function of θV for V =MV andMS. WithMV orMS preferences,

CV V
¡
θV
¢
may be negative for any user for certain values of the parameters (this is not the case in Figure

5). Indeed, withMV preferences, the sign of CV V
¡
θV
¢
is given by the sign of

£
t+
¡
nMV
R,L

¢− t+
¡
n+R
¢¤
, which

is not guaranteed to be positive (see the example following Proposition 3).
Those users are ready to pay for public information because it helps a better distribution of users between
the two routes in the bad state of the nature. With the numerical values of the parameters considered in the
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Figure 5: Compensating variation and expected travel time reduction for the different preferences

example, for MS and CR preferences, the limit above which the compensating variation becomes negative
is far away from the risk aversion threshold and very few users are concerned (1.4% for MS preferences and
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25% for CRRA preferences). On the opposite, utility would be reduced by public information for a large
fraction of users with the two other functional for preferences (77% with MV expected utility and 53% with
CARA utility).

5 CONCLUSION
We have proposed in this paper a framework to analyze the rational behavior of drivers facing uncertain
travel time conditions. We have shown the importance of the risk aversion parameter to explain route choice
behavior and the impact of information. The users with high enough risk aversion modify their choice when
they are informed of good conditions, while risk neutral individuals stay on the risky route whether or not
they receive information. However, we show that both types of users benefit from information given that the
expected travel time is reduced for all users. Interestingly, we have shown that individual benefit depends
on their level of risk aversion. Moreover, this dependency is not monotonic (see Figure 3).
The validation of this model with empirical data will require to imbed our model in a discrete choice
framework (see McFadden, 2001). This would add unobserved heterogeneity, as in de Palma and Picard
(2004a), to explain the route choice behavior of users. We also refer the reader to Hartog et al. (2000)
for another measurement of risk aversion when individuals face simple lotteries. In our view, the main
hypotheses to check are the following (1) the individuals are able to estimate the probability of each state
of the nature: de Palma and Picard (2004c) consider a situation in which users discover from day to day
the distribution of travel time and incorporate the information acquired daily, by resorting to a Bayesian
update. In this paper, we consider a situation in which learning has already taken place. (2) The analysis of
route choice with uncertain travel time could allow to identify the specification of the utility function and the
risk aversion parameters. However, it is likely that stated as well as revealed information will be needed to
estimate such models. (3) Finally, the above analysis relies on the expected utility theory. Different authors
since Kahneman and Tversky (1979) have argued that individuals may overestimate small probabilities and
underestimate large probabilities. In the transportation context, it would be interesting to see how such
theory (referred to as Cumulative Prospect Theory) applies. See Camerer (1989), Machina (1982), as well
as the visionary paper by Allais (1953). This amounts to analyze how drivers may change their route when
there is a small probability that an important event occurs. For example, in France, the department of
transportation has started to publish the number of accidents which occurred on each major interurban
highway and roadway (which could be used to compute the probability that a driver has an accident). It
remains to analyze how this information would affect route choice for a fraction of drivers. In addition,
according to Ellsberg’s paradox (see Kagel and Roth, 1995), individuals may be averse not only to risk, but
also to ambiguity. This would represent an additional value for acquiring information from day to day, thus
increasing the advantage of selecting the risky route (at least at the beginning of the learning process). Much
research, both at a theoretical and at an empirical point of view, needs to be devoted in order to better
understand all the unexplored facets of the Drivers Information System.
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6 APPENDIX

6.1 Correspondence between (∆, δ, τ) and (t−, t+ (nR) , tS (nS))

The correspondence between the symmetric notations (∆, δ, τ) used in de Palma and Picard (2004b) and
the endogenous travel times is given by:⎧⎨⎩ (1−∆) τ = t−

(1 +∆) τ = t+ (nR)
(1 + δ) τ = tS (nS)

⇔
⎧⎨⎩ ∆ = [t+ (nR)− t−] / [t+ (nR) + t−]

δ = 2tS (nS) / [t
+ (nR) + t−]− 1

τ = [t+ (nR) + t−] /2
. (12)

6.2 Thresholds

The probability thresholds p̃Vθ (such that EUV
¡
TR; θ

V
¢
= UV

¡
tS ; θ

V
¢
) are given by analytic formulas for

the four specifications of preferences considered:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p̃MV
θ =

½
1 + (t+ − t−) θMV −

r
1 +

h
(t+ − t−) θMV − 2ts

t++t− − 1
i
(t+ − t−) θMV

¾
/©2 (t+ − t−) θMV

ª
,

p̃MS
θ =

(¡
θMS

¢2
+ 1 + 2 tS−t

−
t+−t− − θMS

r
(θMS)

2
+ 1−

³
2 tS−t−t+−t−

´2)
/
n
2
h
1 +

¡
θMS

¢2io
,

p̃CRθ =
h
(tS)

1+θCR − (t−)1+θCR
i
/
h
(t+)

1+θCR − (t−)1+θCR
i

and
p̃CAθ =

£
exp

¡
t
S
θCA

¢− exp ¡t−θCA¢¤ / £exp ¡t+θCA¢− exp ¡t−θCA¢¤ .
(13)

In addition, formulas are far more simple for the risk aversion thresholds θ̃MV
p and θ̃MS

p :⎧⎪⎪⎨⎪⎪⎩
θ̃MV
p = [tS − t− − p (t+ − t−)] /

h
p (1− p) (t+ − t−)2

i
and

θ̃MS
p = [tS − t− − p (t+ − t−)] /

hp
p (1− p) (t+ − t−)

i
.

(14)

However, no analytic formula can be obtained for he risk aversion thresholds θ̃CRp and θ̃CAp , which solve,
respectively: ⎧⎪⎨⎪⎩

p (t+)
1+θ̃CRp + (1− p) (t−)1+θ̃

CR
p = (tS)

1+θ̃CRp

and

p exp
³
t+θ̃CAp

´
+ (1− p) exp

³
t−θ̃CAp

´
= exp

³
tS θ̃

CA
p

´
.

(15)

6.3 Proof of Theorem 2

Equations 14 clearly show that θ̃MV
p and θ̃MS

p are increasing in tS and decreasing in t+. Assumption 1 then
implies that θ̃MV

p and θ̃MS
p are decreasing in nR.

Let

ψCR
¡
p, t−, t+, tS ; θCR

¢
= (tS)

1+θCR −
h
p
¡
t+
¢1+θCR

+ (1− p)
¡
t−
¢1+θCRi

=
¡
1 + θCR

¢ £
EUCR

¡
TR; θ

CR
¢− UCR

¡
tS ; θ

CR
¢¤
and

ψCA
¡
p, t−, t+, tS ; θCA

¢
= exp

¡
tSθ

CA
¢− £p exp ¡t+θCA¢+ (1− p) exp

¡
t−θCA

¢¤
= θCA

£
EUCA

¡
TR; θ

CA
¢− UCA

¡
tS ; θ

CA
¢¤
.

The user with preferences UV
¡
t; θV

¢
, for V = CR,CA is then indifferent between the two routes when

ψV
¡
p, t−, t+, tS ; θV

¢
= 0. She prefers route R when ψV (.) > 0 and route S when ψV (.) < 0. The function



A. DE PALMA AND N. PICARD 20

ψV (.) , V = CR,CA is increasing in tS and decreasing in t+, so it is decreasing in nR. We will now prove that

ψV (.) , V = CR,CA is locally decreasing in θV , at the indifference point θ̃Vp which solves ψ
V
³
.; θ̃Vp

´
= 0.

Consider first CRRA preferences. ψV
³
.; θ̃CR

´
= 0 corresponds to:

(tS)
1+θ̃CR = p (t+)

1+θ̃CRp + (1− p) (t−)1+θ̃
CR
p

⇔
³
1 + θ̃CRp

´
ln (tS) = ln

h
p (t+)

1+θ̃CRp + (1− p) (t−)1+θ̃
CR
p

i
which can be used to eliminate tS in the derivative:

∂ψCR

∂θCR

³
.; θ̃CRp

´
=
³
1 + θ̃CRp

´
ln (tS) (tS)

1+θ̃CRp −
³
1 + θ̃CRp

´ ∙
p ln

¡
t+
¢ ¡
t+
¢1+θ̃CRp + (1− p) ln

¡
t−
¢ ¡
t−
¢1+θ̃CRp ¸

= ln

∙
p
¡
t+
¢1+θ̃CRp + (1− p)

¡
t−
¢1+θ̃CRp ¸ ∙

p
¡
t+
¢1+θ̃CRp + (1− p)

¡
t−
¢1+θ̃CRp ¸

−
∙
p
³
1 + θ̃CRp

´
ln
¡
t+
¢ ¡
t+
¢1+θ̃CRp + (1− p)

³
1 + θ̃CRp

´
ln
¡
t−
¢ ¡
t−
¢1+θ̃CRp ¸

,

which is in the form: z ln (z) − [px ln (x) + (1− p) y ln (y)], with z = px + (1− p) y. The convexity of the

function x ln (x) then implies that ∂ψCR

∂θCR

³
θ̃CRp

´
< 0, so

∂θ̃CRp
∂nR

= −∂ψCR

∂nR

³
.; θ̃CRp

´
/∂ψ

CR

∂θCR

³
.; θ̃CRp

´
< 0. We

have therefore proved that θ̃CRp is decreasing in nR.
The proof goes a similar way for CARA preferences. In that case, x = exp

¡
t+θCA

¢
, y = exp

¡
t−θCA

¢
and

θ̃CAp
∂ψCA

∂θCA

³
.; θ̃CAp

´
= z ln (z) − [px ln (x) + (1− p) y ln (y)]. The details of the proof for CARA preferences

are left to the reader.

6.4 Proof of Theorem 3

The equilibrium number of users on route R is the number nVR,L of users which are less risk averse than

indifferent user θ̃Vp
¡
nVR,L

¢
: nVR,L = NFL

³
θ̃Vp
¡
nVR,L

¢
; θ̄V

´
, or nVR,L/N = FL

³
θ̃Vp
¡
nVR,L

¢
; θ̄V

´
. Let φL (nR) =

FL
³
θ̃Vp (nR) ; θ̄

V
´
. Since FL (.) is strictly increasing on its support I and θ̃Vp (.) is strictly decreasing in nR

(see Theorem 2), φL (nR) is strictly decreasing in nR. According to Lemma 3, we have 0 < φL (0), and
according to Lemma 4, we have 1 > φL (N). Since in addition nR/N is strictly increasing in nR there exists
a unique solution nVR,L, with 0 < nVR,L < N such that nVR,L/N = φL

¡
nVR,L

¢
.

6.5 Proof of Proposition 3

Consider the individual with θV = θ̃Vp
¡
nVR,L

¢
, who is indifferent between the two routes when the state of

the nature is unknown (and traffic on the risky route is nVR,L). Her expected utility satisfies:

pUV
³
t+
¡
nVR,L

¢
; θ̃Vp

´
+ (1− p)UV

³
t−; θ̃Vp

´
= UV

³
tS
¡
N − nVR,L

¢
; θ̃Vp

´
⇔ p

h
UV

³
t+
¡
nVR,L

¢
; θ̃Vp

´
− UV

³
tS
¡
N − nVR,L

¢
; θ̃Vp

´i
+(1− p)

h
UV

³
t−; θ̃Vp

´
− UV

³
tS
¡
N − nVR,L

¢
; θ̃Vp

´i
= 0

Since t− < tS
¡
N − nVR,L

¢
, one gets

UV
³
t−; θ̃Vp

´
− UV

³
tS
¡
N − nVR,L

¢
; θ̃Vp

´
> 0,

which implies, from the last equation, that

UV
³
t+
¡
nVR,L

¢
; θ̃Vp

´
− UV

³
tS
¡
N − nVR,L

¢
; θ̃Vp

´
< 0,
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and t+
¡
nVR,L

¢
> tS

¡
N − nVR,L

¢
.

Note that the function

Ω (nR) ≡ UV
³
t+ (nR) ; θ̃

V
p

´
− UV

³
tS (N − nR) ; θ̃

V
p

´
is decreasing in nR. Therefore, Ω

¡
n+R
¢
= 0 (see Proposition 2) and Ω

¡
nVR,L

¢
< 0 implies that nVR,L > n+R.

6.6 Proof of Proposition 4

Equilibrium traffic nVR,L > n+R, so tS
¡
N − nVR,L

¢
< tS

¡
N − n+R

¢
. Without information on the state of the

nature, the least risk averse users choose route R, which is not subject to congestion in the good state of the
nature. Consequently, the least risk averse users incur the same travel time with and without information
in the good state of the nature. In the bad state of the nature, n+R < nVR,L, so travel time on the risky route
is reduced by information. Expected travel time is therefore reduced by information for users who choose R
without information, that is users with θV < θ̃Vp

¡
nVR,L

¢
.

When nR = nVR,L, the risky route is chosen by some risk averse users, those with θV ∈
i
0; θ̃Vp

¡
nVR,L

¢h
, so

the expected travel time is less on route R than on route S when nR = nVR,L: pt
+
¡
nVR,L

¢
+ (1− p) t− <

tS
¡
N − nVR,L

¢
. In addition, n+R < nVR,L, so t

+
¡
n+R
¢
< t+

¡
nVR,L

¢
and pt+

¡
n+R
¢
+ (1− p) t− < pt+

¡
nVR,L

¢
+

(1− p) t− < tS
¡
N − nVR,L

¢
, which implies that information reduces expected travel time also for the most

risk averse users.
Expected travel time variation (due to the provision of information), which corresponds to the difference
between expected travel times without and with information, is therefore positive both for the most and the
least risk averse users.
Note that expected travel time is the same for the most and the least risk averse users when the state of the
nature is known (see Table 1), so the difference between the expected travel time gain by the most and the
least risk averse users is equal to the difference between expected travel time for the most and the least risk
averse users without information. That is:

tS
¡
N − nVR,L

¢−pt+ ¡n+R¢−(1− p) t−−p £t+ ¡nVR,L¢− t+
¡
n+R
¢¤
= tS

¡
N − nVR,L

¢−£pt+ ¡nVR,L¢+ (1− p) t−
¤
> 0.

The positive sign corresponds to the fact that risk neutral users select route R when the state of the nature
is unknown, which implies that expected travel time is lower on route R than on route S.

6.7 Computation of CV
¡
θV
¢

Recall that σ2 (TR (nR)) = p (1− p) (t+ (nR)− t−)2.
In the Mean-Variance case, we obtain:

CVMV
¡
θMV

¢
= E

¡
TR
¡
nMV
R,L

¢¢− E ¡TR ¡n+R¢¢+ θMV
£
σ2
¡
TR
¡
nMV
R,L

¢¢− σ2
¡
TR
¡
n+R
¢¢¤

= p
£
t+
¡
nMV
R,L

¢− t+
¡
n+R
¢¤
+ θMV p (1− p)

£
t+
¡
nMV
R,L

¢− t+
¡
n+R
¢¤ £

t+
¡
nMV
R,L

¢
+ t+

¡
n+R
¢− 2t−¤

when θMV < θ̃MV
p

¡
nMV
R,L

¢
and

CVMV
¡
θMV

¢
= tS

¡
N − nMV

R,L
¢− E ¡TR ¡n+R¢¢− θMV σ2

¡
TR
¡
n+R
¢¢

= tS
¡
N − nMV

R,L
¢− pt+

¡
n+R
¢− (1− p) t− − θMV p (1− p)

h¡
t+
¡
n+R
¢− t−

¢2i
when θMV > θ̃MV

p

¡
nMV
R,L

¢
.

In the Mean-Standard deviation case, we obtain

CVMS
¡
θMS

¢
= E

¡
TR
¡
nMS
R,L
¢¢− E ¡TR ¡n+R¢¢+ θMS

£
σ
¡
TR
¡
nMS
R,L
¢¢− σ

¡
TR
¡
n+R
¢¢¤

= p
£
t+
¡
nMS
R,L
¢− t+

¡
n+R
¢¤
+ θMS

p
p (1− p)

£
t+
¡
nMS
R,L
¢− t+

¡
n+R
¢¤
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when θMS < θ̃MS
p

¡
nMS
R,L
¢
and

CVMS
¡
θMS

¢
= tS

¡
N − nMS

R,L
¢− E ¡TR ¡n+R¢¢− θMSσ

¡
TR
¡
n+R
¢¢

= tS
¡
N − nMS

R,L
¢− pt+

¡
n+R
¢− (1− p) t− − θMS

p
p (1− p)

£
t+
¡
n+R
¢− t−

¤
when θMS > θ̃MS

p

¡
nMS
R,L
¢
.

In the CARA case, we obtain:

CV CA
¡
θCA

¢
=

1

θCA
ln

p exp
¡
t+
¡
nCAR,L

¢
θCA

¢
+ (1− p) exp

¡
t−θCA

¢
p exp

¡
t+
¡
n+R
¢
θCA

¢
+ (1− p) exp (t−θCA)

when θCA < θ̃CAp
¡
nCAR,L

¢
and

CV CA
¡
θCA

¢
=

1

θCA
ln

exp
¡
tS
¡
N − nCAR,L

¢
θCA

¢
p exp

¡
t+
¡
n+R
¢
θCA

¢
+ (1− p) exp (t−θCA)

when θCA > θ̃CAp
¡
nCAR,L

¢
.

No analytical formula is available for CV CR
¡
θCR

¢
, which solves:

p
£
t+
¡
n+R
¢
+ CV CR

¡
θCR

¢¤1+θCR
+(1− p)

£
t− + CV CR

¡
θCR

¢¤1+θCR
= p

£
t+
¡
nCRR,L

¢¤1+θCR
+(1− p)

£
t−
¤1+θCR

when θCR < θ̃CRp
¡
nCRR,L

¢
and which solves:

p
£
t+
¡
n+R
¢
+ CV CR

¡
θCR

¢¤1+θCR
+ (1− p)

£
t− + CV CR

¡
θCR

¢¤1+θCR
=
£
tS
¡
N − nCRR,L

¢¤1+θCR
when θCR > θ̃CRp

¡
nCRR,L

¢
.


