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Abstract 

The spatial Durbin model occupies a key position in Spatial Econometrics. It is 

the reduced form of a model with cross-sectional dependence in the errors, but it may 

also be used as the nesting model in a more general approach of model selection. In the 

first case, it is the equation where we solve the Likelihood Ratio test of Common 

Factors, LRCOM. The objective in this case is to discriminate between substantive and 

residual dependence in an, apparently, misspecified equation. Our paper tries to go 

further into the interpretation of this intermediate equation in both aspects. We include a 

small Monte Carlo study related to the LRCOM test and present some new results that 

facilitate the use, and the interpretation, of the Durbin equation in a more general 

context of discriminating between econometric models in a spatial context. 
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1. Introduction 

In recent years, there has been an increase in the concern about questions related 

to methodology in Spatial Econometrics. The works of Anselin and Florax (1995), 

Anselin et al. (1996) and Anselin and Bera (1998) have played a fundamental role in the 

revitalisation of this concern. These works deal, among other things, with the lack of 

specificity of the traditional tests based on the principle of the Lagrange Multiplier and, 

consequently, with the difficulty of finding the true model when there are various 

alternatives. Particularly, they demonstrate that there is a very real probability of 

obtaining a misspecification if the analyst is not sufficiently careful with the method. 

Later, Florax, Folmer and Rey (2003) carried out a more systematic approach to 

the root of the problem, comparing the results of the methodology of Hendry with those 

of other more traditional techniques in the field of spatial econometrics. Surprisingly, 

the latter seem to work better. Mur and Angulo (2005) follow the same lines introducing 

new elements into a discussion that appears to be more extensive / (an, apparently, more 

open disccussion). Dubin (2003) focuses on the robustness of various models of 

interaction to capture structures of spatial autocorrelation in the error term of the 

equation, in an approach that is reminiscent of that of Florax and Rey (1995). McMillen 

(2003) demonstrates that, beneath an apparent problem of autocorrelation, what the 

analyst may really be finding is a misspecification of the model: ’yet autocorrelation is 

often produced spuriously by model misspecification’ (p.215) is one of his conclusions. 

Finally, López-Bazo and Fingleton (2004) openly question the real validity of 

specifications with structures of dependence in the error term of the equation. 

According to them, if the externalities that dominate in a spatial context are as Anselin 

(2003) describes them, it is reasonable to find substantive cross-sectional dependence 

relationships (that is, where lags in the endogenous variable are necessary on the right-

hand side of the equation). However, what dominates in most of the cases analysed by 

the authors are mechanisms of residual dependence. Using particular but relevant 

modelling problems, López-Bazo and Fingleton arrive at the same conclusion reached 

previously by McMillen: really, what habitually underlies models with residual 

autocorrelation is a problem of misspecification of the equation due, in general, to the 

omission of relevant variables on the right-hand side. 



 3

In this paper, we want to contribute further evidence towards the debate on 

methodology in Spatial Econometrics that we have hurriedly outlined above. Our 

objective, in particular, focuses on what the literature calls the ‘Spatial Durbin Model’ 

and on the test of common factors, LRCOM. Both elements are intimately linked, as is 

remarked in Section 2, and they can become very helpful instruments in the process of 

specifying an econometric model. In Section 3, we present the main results obtained 

from a Monte Carlo experiment on the LRCOM test. The paper finishes with a section 

of conclusions. 

2. The Spatial Durbin Model and the test of Common Factors 

The Durbin model arises in a very specific context in which, using time series, 

we need to estimate an econometric model with an AR(1) error term: 

 
'
t tt

t t 1 t

y ux
u u −

⎫= β + ⎪
⎬

= ρ + ⎪ε ⎭
 (1) 

 Cochrane and Orcutt (1949) had proposed a stepwise algorithm using successive 

LS estimations in semi-differentiated variables, 

(r 1) (r 1)
t t 1 tt t 1 'y y x x− −

−−
⎡ ⎤− ρ = − ρ β + ε⎣ ⎦ , where (r 1)−ρ  is the estimation of ρ obtained 

in the (r-1)th iteration. The process, implicitly, begins with a value of ρ equal to zero, 

which can lead to problems of consistency in some cases. To avoid such 

inconveniences, Durbin (1960) suggested directly estimating the reduced unrestricted 

form of (1) by LS: 

 ' '
t t 1 tt 1ty x x −−= + β + θ +ρ ε  (2) 

 This alternative already guarantees consistent estimators in the first step and is 

much simpler. The adaptation of these results to the spatial case does not involve any 

complexity, as Anselin (1980) proposed: 

 
y x u

y Wy x Wx
u Wu

= β + ⎫
⇒ = ρ + β + θ + ε⎬= ρ + ε⎭

 (3) 

where W is the weighting matrix; y, u and ε are vectors of order (Rx1); x is the (Rxk) 

matrix of observations of the explicative variables; β a (kx1) vector of parameters and ρ 
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the autoregressive parameter of the SAR(1) process that intervenes in the random term 

of (3). 

 Following the initial proposal of Durbin, the next step should be the estimation 

of the reduced form of (3), which creates serious difficulties. The problem with the last 

expression is that, unlike what happens in (2), the equation cannot be estimated by LS 

because there is an endogenity relationship: the regressor Wy is contemporaneously 

dependent on the error term, ε (yt-1 is predetermined in (2), which results in biased but 

still consistent estimators). In this sense, the Durbin model does not help to simplify the 

problem of the estimation of the autoregressive parameter. However, the equation is 

useful for us because it highlights other questions relevant to the specification exercise. 

 Firstly, it clearly shows why substantive spatial dependence tests (the LM-LAG, 

for example) have so much power when they act in static models in which an 

autoregressive, SAR(1), process was present in the error term: the reduced form of both 

types of models is the same, except for the term Wxθ. The opposite is equally 

applicable: residual dependence tests (the LM-ERR, for example) have high power 

when they are applied to dynamic structures whose error term is white noise. The 

already cited works of Anselin and Florax (1995) and of Anselin et al. (1996) try 

precisely to correct this source of uncertainty. 

 Another aspect to note is that in (3) it must hold that θ=-ρβ. That is, if in the 

unrestricted equation of (3) we cannot reject the set of k non-linear restrictions, the 

evidence points to a static process with an SAR(1) error term. The resulting test is the 

LRCOM of Burridge (1981), which is specified as a traditional Likelihood Ratio test. In 

order to obtain it, it will be necessary to estimate the ample model by ML: 

 2

y Wy x Wx

~N(0, I)

= ρ + β + θ + ε⎫⎪
⎬

ε ⎪σ ⎭
 (4) 

where, for simplicity, we assume normality in the error term. The log-likelihood 

function of the model is standard: 

 
[ ] [ ]2

A 2
By x Wx ' By x WxR Rl(y / ) ln 2 ln ln B

2 2 2
− β − θ − β − θ

ϕ = − π − − +σ
σ

 (5) 
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with ϕA = [β,θ,ρ,σ2]’; |B| is the determinant of the Jacobian term whose logarithm is 

easily obtained: ( )R
rr 1ln B I W 1== − ρ = − ρ∑ λ , with {λr, r=1, 2, ..., R} being the set of 

R eigenvalues of matrix W. The optimisation of (5) presents no difficulties. 

 Let's look now at the restricted model: 

 
y x u
u Wu

= β + ⎫
⎬= ρ + ε⎭

 (6) 

whose log-likelihood function is also known: 

 
( ) ( )2

0 2
y x 'B'B y xR Rl(y / ) ln 2 ln ln B

2 2 2
− β − β⎡ ⎤

= − π − − +ϕ σ ⎢ ⎥
σ⎣ ⎦

 (7) 

with ϕ0 = [β,ρ,σ2]’. Formally, the LRCOM test can be expressed as: 

 0 2
A 0

A

: 0H LRCOM 2 l(y / ) l(y / ) ~ (k)
: 0H
ρβ + θ = ⎫

⇒ = ⎡ − ⎤ϕ ϕ χ⎬ ⎣ ⎦ρβ + θ ≠ ⎭
 (8) 

 If the null hypothesis is accepted, Model (6) should be specified, while we will 

maintain the unrestricted dynamic model, (4), if this hypothesis is not admissible. So 

that this test does not give rise to errors, it should be applied once the habitual tests of 

autocorrelation, residual or substantive, have allowed the rejection of the static model 

without spatial effects1. That is, the LRCOM test is useful in cases in which there is 

enough evidence to maintain that the parameter ρ is different to zero; the problem is that 

we do not know exactly in which specification, that of (4) or that of (6). 

 The situation described overlaps with that corresponding to the LM-LE and LM-

EL tests, as shown in Anselin et al. (1996), which are robust to local misspecification 

errors in the null hypothesis. However, these tests pose an additional operative problem 

which is that, to reach a definitive conclusion as to the type of spatial effects in the 

specification, there must not be any contradictions between them (for example, 

accepting, or rejecting, simultaneously their respective null hypotheses). This 

circumstance, according to the results presented in Mur and Trívez (2003) or in Mur and 

                                                 
1  In that case, if ρ and θ are equal to zero, both in (4) and in (6), the null hypothesis will continue to hold. 
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Angulo (2005), cannot be totally discarded. In any case, these tests (the LRCOM and 

the LM-LE and LM-EL) are instruments that should be used complementarily because 

they exploit different dimensions of the same problem. 

 Returning to the Likelihood Ratio, neither is the LRCOM free of difficulties and 

in no case will it be a final test. For example, if the test leads us to the dynamic model 

of (4), it seems reasonable to continue the testing process by proposing the subordinate 

test as to whether external effects associated only with the exogenous variables 

intervene in the equation. That is, if vector θ is equal to zero or not. 

 On the other hand, if the null hypothesis of the LRCOM test is accepted, we 

must consider the additional problem of which is, really, the process that should be 

introduced into the error term. In (6), an SAR(1) process has been specified, but there is 

no reason for excluding alternatives such as the moving average type, given that they 

will produce structures of spatial dependence with similar symptoms. Indeed, using the 

result of Bivand (1984): 

 ( ) ( ) ( ) ( ) ( )1 j j 2 3
j 1I W 1 W I W W W− ∞
=−ρ = − ρ = − ρ + ρ − ρ +∑  (9) 

it is evident that an SAR(1) process admits an SMA(∞) representation. Conversely, an 

SMA(1) process equally admits an SAR(∞) representation, a situation that the LRCOM 

will tend to identify as a generic problem of residual dependence in a static model. In 

sum, also under the null hypothesis a discrimination exercise should be carried out 

between, at least, two alternatives, a structure of autoregressive or of moving average 

dependence. 

 To conclude this section on the Durbin model and the LRCOM test, we want to 

incorporate a series of additional arguments that situate the discussion in its proper 

place. We are, really, dealing with a problem of model selection, which makes it 

advisable to adopt a broader perspective. For example, the nesting model employed up 

to now is that specified in (4), which is ‘an autoregressive distributed lag model of the 

first order’, ADL(1,1), in terms of Bivand (1984, p.27). Blommestein (1983) had 

previously advanced in this same direction suggesting the convenience of adopting an 

approach like Hendry's, structured in a sequence of ADL(m,n) processes, in spite of ‘the 

increasing complexity (in) specifying higher order (>1) spatial lags in the case of non-
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binary weights and/or irregular lattices’ (p. 259). Blommestein's proposal, to initiate 

the process using an ADL(m,n) sufficiently general so as to try to simplify it through 

successive nesting tests, is not easily operative in a spatial context. 

However, for us, this proposal has some interest because it underlines the 

additional necessity of checking, as said before, the dynamics of the model to which the 

LRCOM test has led us. For example, if the data come from an ADL(2,2): 

 1 1 2 2 1 1 2 2
2

y W y W y x W x W x

~N(0, I)

= ρ + ρ + β + θ + θ + ε⎫⎪
⎬

ε ⎪σ ⎭
 (10) 

in which W1 and W2 are two weighting matrixes; ρ1 and ρ2 two autoregressive 

parameters and θ1 and θ2 vectors of parameters associated to the spatial lags of the 

exogenous variables. It is relatively simple to show that if, in (10), we introduce a 

restriction of common factors such as: θ1=-ρ1β, we will obtain a model with an SAR(1) 

error term in which dynamic elements will continue to act in the main equation: 

 

[ ] [ ]
[ ] [ ] [ ]

[ ]

1 1 2 2 1 1 2 2
1 1 1

2 2 2 21 1 1 1 1 1
1* *

2 2 1 1

I W y W y I W x W x

y W y W xI W I W I W

y W y W x I W

− − −

−

− ρ = ρ + − ρ β + θ + ε

⇒ = ρ + θ + ε−ρ −ρ −ρ

⇒ = ρ + θ + ε−ρ

 (11) 

where [ ] 1*
21 1W WI W −= −ρ . The problem will be to find a good approximation to W*. 

In any case, it is clear that the reduced form of (11) has a dynamic nature with an 

autoregressive structure in the random term. On the other hand, if we assume as our 

starting point a static model such as that of (6), but with a moving average random term, 

we arrive at an ADL(1,1) with an autocorrelated error term: 

 
2 2

2 ** *
1 2

y x u
u W

u W u Wu W u
u Wu v

y x u Wy x Wx

W W W

= β + ⎫
⎬= ε + ρ ε⎭

= ε + ρ ε ⇒ = ε + ρ + ρ +
⇒ = ε + ρ +

= β + = ρ + β + θ + ω ⎫⎪⇒ ⎬
ω = ε + ε + ε + ≈ ω + ερ ⎪π π ⎭

 (12) 
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 To sum up, if the LRCOM has led us to the dynamic model of (4), it should be 

tested, among other things, that the error term of the equation is a white noise, using, for 

example, the Lagrange Multiplier RSλ|ρ of Anselin and Bera (2003). Equally, if the 

LRCOM leads us to a static model with an apparent SAR(1) structure in the random 

term, the necessity of also including dynamic elements in the main equation should be 

tested through the RSρ|λ test of Anselin and Bera (2003), also based on the Lagrange 

Multiplier. 

3. The LRCOM in small to medium sample sizes. A Monte Carlo approach. 

In the previous section we have insisted on the important role that the LRCOM 

test can play in the specification process of a cross-sectional econometric model. As has 

been said, it is not a final test but only signposts the appropriate direction to take in the 

specification of the model. Furthermore, the indications of this test should be 

complemented with those of other instruments before reaching a definitive solution. In 

short, it is an additional test that occupies a strategic position in the whole process. 

For this reason, the scant attention that has been paid to it in the specialised 

literature seems a little surprising. To cite only the most recent cases, it is not included 

in the comprehensive simulation exercise carried out by Anselin and Florax (1995), nor 

is it mentioned in the meta-analysis of Florax and de Graaff (2004) nor in the manuals 

of Tiefelsdorf (2000) and Griffith (2003). This section aims to partially correct this 

deficiency by resolving a Monte Carlo exercise in order to be able to evaluate the 

behaviour of the LRCOM test under different configurations relative to both the data 

generation mechanism and the sample size. 

 In this exercise we have taken a simple linear model as a point of reference: 

 r rry ux= α + β +  (13) 

 From this, it is straightforward to obtain a Spatial Lag Model, SLM, or a Spatial 

Error Model, SEM. In matrix terms: 

 ( ) ( )
2

2

y x u
y Wy x u

SLM : SEM : u Wu
u~iid 0; I

~iid 0; I

⎧ = β +
= ρ + β +⎧ ⎪⎪ = ρ + ε⎨ ⎨

σ⎪⎩ ⎪ε σ⎩

 (14) 
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 The main characteristics of the exercise are the following: 

(a)- We have used two pairs of values for α and β in (13). The first, (α=10; β=0.5), 

guarantees an average R2 of 0.2 without spatial effects while the second, (α=10; 

β=2.0), raises it to 0.8. 

(b)- The observations of x and of the random terms ε and u proceed from a univariate 

normal distribution with mean zero and a variance, σ2, equal to one in all cases. 

(c)- We have used three different sample sizes: 25, 100 and 225. 

(d)- The contiguity matrix, W, has always been specified as of binary type using a 

rook scheme in a regular lattice of (5x5), (10x10) or (15x15). 

(e)- The range of values for parameter ρ depends on the contiguity matrix used in each 

case. For the matrix of the (5x5) system, the interval is (-0.274; 0.274), for the 

(10x10) it is (-0.248; 0.248) and for the (15x15) it is (-0.229; 0.229). In each case, 

40 values of the parameter, distributed regularly over the whole interval, have been 

simulated. 

(f)- Each combination has been repeated 1000 times. 

 Next, we will present the main results obtained from the simulation, structured in 

three cases of interest. In the first two, one of the two models, the SEM or the SLM, was 

the true one (that is, the data were generated with one of them, the true model, whereas 

the other is, obviously, false). Lastly, the third case is characterised by the true model 

not belonging to the set of alternatives, because the data were generated with a mixed 

model: 

 
( )

1

2
2

y Wy x u
u Wu

~iid 0; I

⎫= + β +ρ
⎪

= + ερ ⎬
⎪ε σ ⎭

 (15) 

 However, the catalogue of possible decisions is limited to the SEM or to the 

SLM, both false in this third case. 
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In all the cases we begin by specifying a model without spatial effects, like that 

of (13), and we look for evidence of misspecification to try to find the correct model 

that generated the data. Figure 1 summarises the results obtained in the first case where 

the data have been generated using an SEM model, whereas Figure 2 presents the results 

observed in the case of the SLM.  

In the figures we show the average R2 obtained for the 1000 simulations 

corresponding to each case, the percentage of rejections of the null hypothesis of the 

absence of spatial effects obtained with the SARMA test and the percentage of 

rejections of the null hypothesis corresponding to the LRCOM test. The terms ‘(h)’ or 

‘(l)’ next to the corresponding sign indicate that these data come from a simulation with 

a high (h) or a low (l) signal-to-noise ratio. Furthermore, ‘unc’ or ’con’ means that the 

LRCOM test has been obtained Unconditionally, ‘unc’, or Conditionally, ‘con’, with 

respect to the SARMA test. In the first case, Unconditional approach, the LRCOM test 

has always been obtained, whether there was evidence of misspecification in the 

equation or not. In the second case, Conditional approach, the LRCOM test has only 

been obtained for those cases in which the SARMA test has previously rejected the 

absence of spatial effects in the estimated equation (that of 13). This means that the 

percentage represented in the series of the conditional approach comes from a variable 

number of cases. 

 The results for the third case appear, in an abridged version, in Table 2. Here we 

summarise only the percentage of rejections of the null hypothesis of the LRCOM when 

the data have been generated with the mixed model of (15) and a high signal-to-noise 

ratio. In a sense, we could say that these percentages measure the propensity to accept 

an SLM instead of an SEM, when the right model is a mixture of both. Horizontally, we 

reproduce the range of ρ1 (the coefficient of Wy in the main equation of 15) and 

vertically the range of ρ2 (the autocorrelation coefficient of the error term). 

 Finally, in Table 1, we present the results obtained when no spatial effects have 

intervened in the DGP. 
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TABLE 1: Percentage of rejections of the null hypothesis of each test.  

Significance level: 5% 

DGP: SEM MODEL with ρ=0 in (14) 

R=25 High R2 Low R2 R=100 High R2 Low R2 R=225 High R2 Low R2

SARMA 0.046 0.045 SARMA 0.049 0.052 SARMA 0.060 0.060 

LR (unc) 0.075 0.094 LR (unc) 0.060 0.057 LR (unc) 0.040 0.050 

LR (con) 0.370 0.578 LR (con) 0.458 0.387 LR (con) 0.167 0.667 

DGP: SLM MODEL with ρ=0 in (14) 

R=25 High R2 Low R2 R=100 High R2 Low R2 R=225 High R2 Low R2

SARMA 0.041 0.044 SARMA 0.045 0.045 SARMA 0.055 0.040 

LR (unc) 0.068 0.083 LR (unc) 0.050 0.055 LR (unc) 0.060 0.051 

LR (con) 0.439 0.568 LR (con) 0.457 0.422 LR (con) 0.471 0.495 

DGP: MIXED MODEL with ρ1= ρ2=0 in (15) 

R=25 High R2 Low R2 R=100 High R2 Low R2 R=225 High R2 Low R2

SARMA 0.052 0.084 SARMA 0.044 0.068 SARMA 0.041 0.049 

LR (unc) 0.062 0.045 LR (unc) 0.060 0.047 LR (unc) 0.050 0.055 

LR (con) 0.598 0.124 LR (con) 0.677 0.388 LR (con) 0.614 0.686 

 

 The percentages of the SARMA test correspond to the level of significance 

estimated for a theoretical level of 5%. The estimates are in the proximity of that value 

and, generally, within the theoretical interval, (0.036;0.064) for 1000 replications. As 

was foreseeable, the estimated size of the test tends to stabilise at the theoretical level of 

5%, as the number of observations in the sample increases. 

 The situation is a little more complex in the LRCOM test. The null hypothesis of 

the test holds for all the cases of the unconditional approach included in Table 1, (if 

there are no spatial effects, parameter ρ and vector θ will be zero in expression (8) so 

the restriction will be verified: ρβ=- θ =0). Obviously, the null hypothesis also holds in 

all the cases contemplated in Figure 1 because the data have been obtained by using an 

SEM model. In both situations, the level of significance estimated for the LRCOM test 

tends to adjust to the theoretical value, with some small anomalies when the sample is 

of reduced size and the parameter of autocorrelation takes high values (case 1.A in 

Figure 1). 
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 The results corresponding to the LRCOM in Table 1, in a conditional approach, 

bear no direct relation to the concept of level of significance because the series were 

generated without spatial effects. The results show a certain predisposition toward SLM 

structures. It should be noted that these estimations are obtained with a very reduced 

number of cases: 1000. ε̂  (where ε̂  is the level of significance estimated for the 

SARMA test). 

 That deficiency of information decreases as the parameter of autocorrelation 

takes higher values, given that the SARMA test detects a greater number of cases with 

spatial effects, as can be seen in Figure 1. The consequence is that the behaviour of the 

LRCOM test under both approaches, unconditional and conditional, tends to converge: 

the inverted U that characterises the series of the unconditional approach narrows as the 

sample size increases. In Case 1.C with a sample of 225 observations, the series of 

rejections corresponding to the unconditional approach and a high signal-to-noise ratio 

maintains a small difference with respect to the series that comes from the conditional 

approach. The discrepancy oscillates between 3 and 4 points, although it is unexpected 

and appears stable. 

 The the power function of the test corresponds to the data reproduced in Figure 

2, in which an SLM has intervened in the DGP, and to those of Table 2, obtained with a 

mixed process. With respect to both cases, we wish to underline the following aspects: 



TABLE 2.  LRCOM in the case of a mixed DGP. High Signal-to-Noise Ratio. 
CASE 3.A: Sample Size is 25 

UNCONDITIONAL APPROACH CONDITIONAL APPROACH 
 ρ1  ρ1 

ρ2 -0.25 -0.21 -0.17 -0.13 -0.10 -0.06 -0.02 0.02 0.06 0.10 0.13 0.17 0.21 0.25 ρ2 -0.25 -0.21 -0.17 -0.13 -0.10 -0.06 -0.02 0.02 0.06 0.10 0.13 0.17 0.21 0.25 
-0.25 0.71 0.74 0.80 0.79 0.66 0.37 0.12 0.15 0.76 0.98 1.00 1.00 1.00 1.00 -0.25 0.71 0.74 0.80 0.80 0.67 0.38 0.13 0.16 0.84 1.00 1.00 1.00 1.00 1.00 
-0.21 0.82 0.93 0.94 0.88 0.72 0.39 0.11 0.13 0.69 0.99 1.00 1.00 1.00 1.00 -0.21 0.82 0.94 0.94 0.90 0.76 0.45 0.14 0.18 0.88 1.00 1.00 1.00 1.00 1.00 
-0.17 0.94 0.97 0.95 0.88 0.70 0.37 0.10 0.09 0.65 0.99 1.00 1.00 1.00 1.00 -0.17 0.94 0.98 0.97 0.92 0.80 0.50 0.16 0.19 0.92 1.00 1.00 1.00 1.00 1.00 
-0.13 0.98 0.98 0.95 0.87 0.68 0.34 0.08 0.07 0.59 0.99 1.00 1.00 1.00 1.00 -0.13 0.98 0.98 0.97 0.94 0.83 0.56 0.19 0.27 0.94 0.99 1.00 1.00 1.00 1.00 
-0.10 0.99 0.99 0.95 0.86 0.65 0.32 0.07 0.07 0.59 0.99 1.00 1.00 1.00 1.00 -0.10 0.99 0.99 0.98 0.94 0.86 0.62 0.26 0.40 0.95 0.99 1.00 1.00 1.00 1.00 
-0.06 1.00 0.99 0.95 0.86 0.63 0.29 0.06 0.06 0.58 0.98 1.00 1.00 1.00 1.00 -0.06 1.00 0.99 0.98 0.95 0.89 0.71 0.37 0.54 0.93 0.98 1.00 1.00 1.00 1.00 
-0.02 1.00 0.99 0.95 0.87 0.61 0.27 0.06 0.06 0.56 0.97 1.00 1.00 1.00 1.00 -0.02 1.00 0.99 0.98 0.96 0.91 0.80 0.57 0.64 0.87 0.97 1.00 1.00 1.00 1.00 
0.02 1.00 0.98 0.94 0.85 0.58 0.26 0.06 0.07 0.55 0.95 0.99 1.00 1.00 1.00 0.02 1.00 0.99 0.98 0.96 0.92 0.85 0.63 0.57 0.82 0.96 0.99 1.00 1.00 1.00 
0.06 1.00 0.98 0.94 0.83 0.57 0.25 0.06 0.07 0.52 0.92 0.98 1.00 1.00 1.00 0.06 1.00 0.99 0.98 0.96 0.93 0.83 0.61 0.46 0.75 0.93 0.98 1.00 1.00 1.00 
0.10 1.00 0.98 0.93 0.81 0.56 0.25 0.06 0.07 0.48 0.88 0.97 0.99 1.00 1.00 0.10 1.00 0.99 0.97 0.96 0.92 0.79 0.47 0.34 0.66 0.88 0.97 0.99 1.00 1.00 
0.13 1.00 0.97 0.92 0.78 0.54 0.23 0.07 0.07 0.41 0.82 0.94 0.98 1.00 1.00 0.13 1.00 0.98 0.97 0.96 0.90 0.69 0.36 0.24 0.55 0.83 0.94 0.98 1.00 1.00 
0.17 0.99 0.97 0.89 0.74 0.51 0.22 0.07 0.09 0.35 0.74 0.89 0.96 0.99 0.99 0.17 0.99 0.98 0.97 0.95 0.85 0.54 0.21 0.19 0.44 0.75 0.89 0.96 0.99 0.99 
0.21 0.98 0.94 0.84 0.70 0.46 0.21 0.08 0.11 0.29 0.58 0.80 0.91 0.97 0.97 0.21 0.98 0.97 0.96 0.93 0.77 0.42 0.17 0.17 0.35 0.60 0.80 0.91 0.97 0.97 
0.25 0.94 0.87 0.75 0.60 0.42 0.24 0.13 0.15 0.25 0.43 0.65 0.80 0.90 0.92 0.25 0.96 0.96 0.94 0.85 0.64 0.35 0.17 0.17 0.27 0.45 0.65 0.80 0.90 0.92 

CASE 3.B: Sample Size is 100 

UNCONDITIONAL APPROACH CONDITIONAL APPROACH 
 ρ1  ρ1 

ρ2 -0.23 -0.19 -0.16 -0.12 -0.09 -0.05 -0.02 0.02 0.05 0.09 0.12 0.16 0.19 0.23 ρ2 -0.23 -0.19 -0.16 -0.12 -0.09 -0.05 -0.02 0.02 0.05 0.09 0.12 0.16 0.19 0.23 
-0.23 0.84 0.89 0.95 0.98 0.95 0.79 0.18 0.24 1.00 1.00 1.00 1.00 1.00 1.00 -0.23 0.84 0.89 0.95 0.98 0.95 0.79 0.18 0.24 1.00 1.00 1.00 1.00 1.00 1.00 
-0.19 0.96 1.00 1.00 1.00 1.00 0.86 0.19 0.23 1.00 1.00 1.00 1.00 1.00 1.00 -0.19 0.96 1.00 1.00 1.00 1.00 0.86 0.19 0.24 1.00 1.00 1.00 1.00 1.00 1.00 
-0.16 1.00 1.00 1.00 1.00 1.00 0.86 0.18 0.23 1.00 1.00 1.00 1.00 1.00 1.00 -0.16 1.00 1.00 1.00 1.00 1.00 0.86 0.18 0.24 1.00 1.00 1.00 1.00 1.00 1.00 
-0.12 1.00 1.00 1.00 1.00 1.00 0.85 0.18 0.21 0.99 1.00 1.00 1.00 1.00 1.00 -0.12 1.00 1.00 1.00 1.00 1.00 0.85 0.19 0.26 1.00 1.00 1.00 1.00 1.00 1.00 
-0.09 1.00 1.00 1.00 1.00 0.99 0.83 0.16 0.17 0.98 1.00 1.00 1.00 1.00 1.00 -0.09 1.00 1.00 1.00 1.00 0.99 0.85 0.21 0.35 1.00 1.00 1.00 1.00 1.00 1.00 
-0.05 1.00 1.00 1.00 1.00 0.99 0.81 0.15 0.15 0.97 1.00 1.00 1.00 1.00 1.00 -0.05 1.00 1.00 1.00 1.00 0.99 0.85 0.30 0.57 0.99 1.00 1.00 1.00 1.00 1.00 
-0.02 1.00 1.00 1.00 1.00 0.99 0.78 0.11 0.14 0.96 1.00 1.00 1.00 1.00 1.00 -0.02 1.00 1.00 1.00 1.00 0.99 0.89 0.47 0.69 0.98 1.00 1.00 1.00 1.00 1.00 
0.02 1.00 1.00 1.00 1.00 0.99 0.75 0.10 0.14 0.95 1.00 1.00 1.00 1.00 1.00 0.02 1.00 1.00 1.00 1.00 0.99 0.93 0.66 0.54 0.96 1.00 1.00 1.00 1.00 1.00 
0.05 1.00 1.00 1.00 1.00 0.99 0.71 0.11 0.14 0.92 1.00 1.00 1.00 1.00 1.00 0.05 1.00 1.00 1.00 1.00 1.00 0.93 0.48 0.32 0.93 1.00 1.00 1.00 1.00 1.00 
0.09 1.00 1.00 1.00 1.00 0.98 0.69 0.12 0.14 0.88 1.00 1.00 1.00 1.00 1.00 0.09 1.00 1.00 1.00 1.00 0.99 0.89 0.27 0.20 0.88 1.00 1.00 1.00 1.00 1.00 
0.12 1.00 1.00 1.00 1.00 0.97 0.66 0.12 0.13 0.84 1.00 1.00 1.00 1.00 1.00 0.12 1.00 1.00 1.00 1.00 0.99 0.78 0.17 0.14 0.84 1.00 1.00 1.00 1.00 1.00 
0.16 1.00 1.00 1.00 1.00 0.95 0.62 0.12 0.12 0.73 1.00 1.00 1.00 1.00 1.00 0.16 1.00 1.00 1.00 1.00 0.97 0.66 0.13 0.12 0.73 1.00 1.00 1.00 1.00 1.00 
0.19 1.00 1.00 1.00 1.00 0.94 0.55 0.11 0.11 0.55 0.95 1.00 1.00 1.00 1.00 0.19 1.00 1.00 1.00 1.00 0.94 0.55 0.11 0.11 0.55 0.95 1.00 1.00 1.00 1.00 
0.23 1.00 1.00 1.00 0.99 0.86 0.45 0.11 0.09 0.32 0.68 0.84 0.91 0.98 0.98 0.23 1.00 1.00 1.00 0.99 0.86 0.45 0.11 0.09 0.32 0.68 0.84 0.91 0.98 0.98 
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TABLE 2. LRCOM in the case of a mixed DGP. High Signal-to-Noise Ratio. (continued) 
 

CASE 3.C: Sample Size is 225 

UNCONDITIONAL APPROACH CONDITIONAL APPROACH 
 ρ1  ρ1 

ρ2 -0.22 -0.19 -0.15 -0.12 -0.08 -0.05 -0.02 0.02 0.05 0.08 0.12 0.15 0.19 0.22 ρ2 -0.22 -0.19 -0.15 -0.12 -0.08 -0.05 -0.02 0.02 0.05 0.08 0.12 0.15 0.19 0.22 
-0.22 0.56 0.41 0.39 0.34 0.30 0.22 0.17 0.21 0.35 0.63 1.00 1.00 1.00 1.00 -0.22 0.56 0.41 0.39 0.34 0.30 0.22 0.17 0.21 0.66 1.00 1.00 1.00 1.00 1.00 
-0.19 0.37 0.43 0.44 0.43 0.35 0.29 0.26 0.22 0.07 1.00 1.00 1.00 1.00 1.00 -0.19 0.37 0.43 0.44 0.43 0.35 0.29 0.26 0.29 0.64 1.00 1.00 1.00 1.00 1.00 
-0.15 0.37 0.47 0.51 0.50 0.45 0.33 0.31 0.06 0.49 1.00 1.00 0.99 1.00 1.00 -0.15 0.37 0.47 0.51 0.50 0.45 0.33 0.31 0.25 0.77 1.00 1.00 0.99 1.00 1.00 
-0.12 0.43 0.52 0.55 0.55 0.54 0.41 0.42 0.02 0.71 1.00 0.97 0.97 1.00 1.00 -0.12 0.43 0.52 0.55 0.55 0.54 0.41 0.44 0.40 0.78 1.00 0.97 0.97 1.00 1.00 
-0.08 0.41 0.53 0.61 0.60 0.60 0.44 0.41 0.00 0.73 0.97 0.83 0.97 1.00 1.00 -0.08 0.41 0.53 0.61 0.60 0.60 0.44 0.51 0.00 0.75 0.97 0.83 0.97 1.00 1.00 
-0.05 0.42 0.59 0.65 0.70 0.68 0.57 0.27 0.02 0.71 0.96 0.58 0.99 1.00 1.00 -0.05 0.42 0.59 0.65 0.70 0.68 0.57 0.56 0.33 0.72 0.96 0.58 0.99 1.00 1.00 
-0.02 0.43 0.60 0.69 0.76 0.73 0.61 0.19 0.13 0.62 0.95 0.33 0.98 1.00 1.00 -0.02 0.43 0.60 0.69 0.76 0.73 0.62 0.63 0.59 0.62 0.95 0.33 0.98 1.00 1.00 
0.02 0.43 0.64 0.75 0.79 0.74 0.60 0.07 0.20 0.57 0.92 0.21 0.99 1.00 1.00 0.02 0.43 0.64 0.75 0.79 0.74 0.62 0.64 0.51 0.57 0.92 0.21 0.99 1.00 1.00 
0.05 0.49 0.67 0.80 0.82 0.76 0.55 0.04 0.26 0.52 0.80 0.13 0.99 1.00 1.00 0.05 0.49 0.67 0.80 0.82 0.76 0.62 0.67 0.52 0.52 0.80 0.13 0.99 1.00 1.00 
0.08 0.55 0.73 0.85 0.84 0.74 0.34 0.03 0.35 0.40 0.55 0.11 0.96 1.00 1.00 0.08 0.55 0.73 0.85 0.84 0.75 0.57 0.60 0.47 0.40 0.55 0.11 0.96 1.00 1.00 
0.12 0.60 0.81 0.87 0.87 0.66 0.16 0.01 0.28 0.28 0.25 0.09 0.94 1.00 1.00 0.12 0.60 0.81 0.87 0.87 0.69 0.52 0.17 0.33 0.28 0.25 0.09 0.94 1.00 1.00 
0.15 0.72 0.88 0.93 0.88 0.53 0.05 0.09 0.25 0.23 0.10 0.10 0.89 1.00 1.00 0.15 0.72 0.88 0.93 0.88 0.70 0.83 0.29 0.27 0.23 0.10 0.10 0.89 1.00 1.00 
0.19 0.90 0.98 0.97 0.75 0.14 0.04 0.19 0.21 0.16 0.09 0.14 0.84 1.00 1.00 0.19 0.90 0.98 0.97 0.84 0.74 0.27 0.25 0.21 0.16 0.09 0.14 0.84 1.00 1.00 
0.22 1.00 1.00 0.79 0.17 0.17 0.23 0.20 0.11 0.12 0.10 0.21 0.75 0.99 1.00 0.22 1.00 1.00 0.99 0.81 0.44 0.27 0.20 0.11 0.12 0.10 0.21 0.75 0.99 1.00 

 



FIGURE 1: LRCOM in the case of an SEM in the DGP. 
CASE 1.A: Sample Size is 25 

 
CASE 1.B: Sample Size is 100 

 
CASE 1.C: Sample Size is 225 
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FIGURE 2: LRCOM in the case of an SLM in the DGP. 
CASE 2.A: Sample Size is 25 

 
CASE 2.B: Sample Size is 100 

 
CASE 2.C: Sample Size is 225 

 



(i) There is a strong effect related to the sample size. The power of the LRCOM test 

(and also of that of the SARMA) improve substantially with the number of 

observations. 

(ii) There is, equally, an effect associated with the explicative capacity of the model. 

All the tests work better with a high R2 coefficient. The differences should not be 

underestimated because they can reach 30 points in the proximities of the null 

hypothesis (ρ equal to zero in this case). 

(iii) The SARMA and LRCOM tests, in an unconditional approach, evolve in a similar 

way although the former always moves slightly above the latter. The two tests are 

not rivals, nor do they refer to the same problem, so this small difference is of no 

great importance. 

(iv) The power functions of both the tests maintain a certain asymmetry with respect to 

the origin (value zero in ρ). In general, both perform slightly better in the range of 

positive values of the parameter of autocorrelation. The difference is evident with a 

sample of 25 observations although it has almost disappeared when the sample 

grows to 100 observations. 

(v) Table 2 reflects a strong preference for processes with a dynamic structure in the 

main equation. With a grey background we highlight those combinations of 

parameters in which the LRCOM has selected mostly the SEM model (percentage 

of rejections under 50%). 

(vi) In general, the LRCOM test tends to select the SEM model when the signal 

coming from the dynamic component of the equation is weak (value of ρ1 in the 

proximities of zero). This appears to be more important than the intensity of the 

signal coming from the equation of the random term (that is, of the value of ρ2). 

(vii) Also in this case there is an effect associated with the sample size. If the number 

of observations included in the sample is small, the LRCOM test selects, on most 

occasions, the SLM model. The situation is partially corrected with a sample of 

225 observations, although a strong imbalance in the distribution of the decisions 

taken by the test persists. 
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4. Conclusions. 

 The test of Common Factors was introduced into a spatial context at the 

beginning of the eighties when a lot of the instruments that we use today were still 

being developed. However, it has never occupied a really important position in the 

process specifying a model. Habitually, it has been used as an auxiliary test, useful for 

corroborating conclusions obtained with other instruments. Nevertheless, we believe 

that it should play a more relevant role as a guide in applied work. 

 As we have insisted, the LRCOM should not be used as a final test but as an 

instrument for defining the most adequate direction for the specification process. At 

least, it should be borne in mind to deal with the requirement of Davidson (2000, p. 

168) when, alluding to its time series equivalent, he indicates: ‘The point is that 

although AR(1) errors may well be the correct specification, they impose a common-

factor parameter restriction on the equation that requires to be tested. It would 

nowadays be regarded as bad practice to impose the AR(1) model without testing the 

implicit restriction’.  

 Our position is that, given the peculiarities of the discipline, we can be a little 

more ambitious. Externalities and dynamic spatial relationships play a strategic role in 

any model that is specified in this field. Nevertheless, these elements often have an 

evasive nature that makes them difficult to see. For this reason, it is important to have 

an instrument that can discriminate between the different alternatives that can be used in 

order to deal with this type of mechanisms. This is especially so when, as we believe to 

have demonstrated in the simulation, it seems to be a very reliable test. 
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