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Abstract 
 

We study the duopolistic interaction between congestible facilities that supply perfect 
substitutes and that make sequential decisions on capacities and prices. The consumers’ time cost 
of accessing or using a facility is determined by the volume-capacity ratio. We analyze duopoly 
prices, capacities and service quality (defined as the inverse of time costs of using the facility) 
and compare the results to monopoly and first-best outcomes. Findings include the following. 
First, while price competition between duopolists is beneficial for consumers, introducing 
capacity competition is harmful. The duopolist offers lower service quality than the monopolist, 
who does provide the socially optimal quality level. Second, higher marginal costs of capacity 
may increase profits. Third, asymmetric Nash-equilibria may result even when firms are ex ante 
identical. More specifically, when capacity is cheap or demand is relatively inelastic, the only 
stable equilibria are asymmetric. In such an equilibrium, the large facility provides high quality at 
a high price, and the smaller facility offers lower quality at lower prices. In other words, there is 
endogenous product differentiation by ex ante identical firms.  
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1. Introduction 

Facilities like seaports, airports, internet access providers, and roads, are prone to 

congestion.  When the volume of simultaneous users increases and capacity is constant, 

the time cost of using these facilities increases.  More generally, the quality of the service 

provided by a facility may decrease when it gets crowded.  Facility management can 

respond to quality deterioration by changing prices, but also by adapting the capacity of 

the facility.  This paper asks how capacity and price decisions are made for congestible 

facilities in an oligopolistic market structure, and compares the oligopoly result to the 

monopoly and the socially optimal outcome. More specifically, we study the duopolistic 

interaction between congestion-prone facilities that supply perfect substitutes in the 

framework of a sequential game.  The facilities first decide simultaneously on capacities; 

next, they simultaneously choose prices, given capacity decisions.  Prices and capacities 

jointly determine consumers’ time cost of accessing or using a particular facility. The 

quality of service, defined as the inverse of time costs of using a facility, declines with 

crowding.   

  The analysis of this paper is relevant to a number of situations.  Competition 

between airports in metropolitan areas (e.g. San Francisco Airport and Oakland Airport in 

the San Francisco Bay Area) is one example.  The airports are congestible, so that service 

quality declines with the number of passengers and plane movements.  If airport 

management maximizes profits1, then price decisions and capacity choices will interact 

with service quality (congestion).  A second example relates to competition between 

ports that serve the same hinterland (e.g. the ports of Long Beach and of Los Angeles in 

Southern California, or the ports of Antwerp and Rotterdam in Western Europe).  Here 

too, port capacities and port charges can be chosen by the port authorities to maximize 

profits.  Competition between internet service providers is another example, although our 

maintained no entry assumption is less straightforward in this case.  The quality of 

internet service can be measured as a weighted average of (mainly) download speed, 

                                                 
1 At present, many airports do not act as profit-maximizers, especially in the U.S., as they are constrained 
by regulation and by long run contracts with (dominant) carriers (FAA/OST, 1999).  In a fully deregulated 
environment, market power deriving from airport congestion may be more likely to accrue to airports than 
to airlines.  Moreover, the interaction between congestion, price and capacity decisions is present when 
airports maximize a weighted sum of revenues and output. 
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upload speed and mail processing speed; the capacity (computing power, disk space and 

network capacity) that is required to keep quality constant is approximately a linear 

function of the number of simultaneous users.2   

The main insights of this paper are the following. First, we find that, at the Nash 

equilibrium capacities and prices, service quality is below the socially optimal level.  

This is not the case under monopoly, where pricing and capacity choices do result in the 

socially optimal service quality. In other words, since in our model duopoly prices are 

below monopoly prices we find that, while price competition between duopolists yields 

benefits for consumers, capacity competition is harmful. Second, strategic interaction 

between prices and capacities implies that higher marginal capacity costs may increase 

duopoly profits. Third, the duopoly outcome may yield both symmetric and asymmetric 

Nash equilibria. Specifically, when capacity costs are low or demand is fairly elastic, the 

only stable equilibria are asymmetric. This results in endogenous product differentiation 

by ex ante identical facilities. Duopolistic interaction by the congested facilities results in 

a large facility that provides high quality at a high price, and a small facility with a 

smaller market share and lower quality and prices.     

Our analysis of price and capacity decisions in a homogenous goods duopoly as a 

sequential game in capacities and prices builds upon earlier literature.  Braid (1986) and 

Van Dender (2005) study duopoly pricing decisions of congested facilities, but they do 

not consider capacity adjustments.  de Palma and Leruth (1989) do study a two-stage 

game in capacities and prices; however, they focus on a discrete demand representation 

(users either consume one or zero units of the good), which does not allow discussing the 

role of specific model parameters in much detail.3  Baake and Mitusch (2004) develop a 

model similar to ours, but they focus on the comparison between Cournot and Bertrand 

models in the pricing stage of the game and do not study the possibility of multiple 

equilibria. This paper provides a more detailed analysis of Bertrand pricing policies, it 

pays more attention to the distortion of service quality in the duopoly case, it contains a 

detailed numerical illustration of price, capacity and service quality levels under different 

                                                 
2 Personal communication with Francis Depuydt, Team Manager Integrated Service Platforms, Belgacom. 
3 In their model, the Nash equilibrium in capacities will occur where capacities are restricted up to the point 
of zero consumer surplus. 
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market structures, and it analyzes the occurrence of multiple equilibria.  Acemoglu and 

Ozdazgar (2005) recently provide a detailed theoretical analysis of competition and 

efficiency on network markets. Among other things, they show that more competition 

among oligopolists can reduce efficiency on congested markets, and that pure strategy 

equilibria may not exist, especially when congestion functions are highly nonlinear. 

However, they exclusively focus on price competition, and do not consider capacity 

competition.  

Lastly, the sequential capacity-price game can be contrasted to the literature 

evolving from the seminal paper by Kreps and Scheinkman (1983). They show that, with 

an L-shaped marginal cost function and with an efficient capacity-sharing rule, the two-

stage capacity-price game yields the same result as a one-stage Cournot game in 

quantities. Later papers, e.g. Maggi (1996), Dastidar (1995, 1997) and Boccard and 

Wauthy (2000, 2004), find that this result does not hold when marginal production costs 

increase before capacity is reached or when different sharing rules are used.  In the 

current paper an upward sloping user cost function in combination with the consumer 

equilibrium constraint leads to ‘endogenous sharing’, as the distribution of output over 

the facilities is determined within the model, rather than through an external sharing rule 

(as is required in the homogenous goods case without congestion, in order to determine 

the distribution of market demand over firms). Not surprisingly, in this context the two-

stage capacity-price game does not reduce to a one-stage Cournot game.   

The paper is structured as follows. Section two contains the theoretical analysis.   

Section three uses a numerical example to clarify the properties of the model and to 

illustrate the role of various parameters.  Section four concludes.   

 

2. Analytical model 

 This section provides a detailed analysis of the capacity-price game where the 

duopolists are assumed to be profit-maximizers.  First, the structure of the model and the 

reduced form demand system are laid out.   Then the second stage (price competition) 

and the first stage (capacity competition) of the duopoly game are analyzed.  The duopoly 

solution is compared to the monopoly outcome and to the social welfare optimum.  Note 

that we delegate technical details to appendix wherever appropriate. An alternative 
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objective function, in which the facilities maximize a weighted sum of profits and of 

output, is considered in appendix as well.4

 

2.1. Structure of the model and reduced form demands 

 

There are two facilities, A and B, providing identical services. Consumers’ 

aggregate marginal willingness to pay is described by a downward sloping linear inverse 

demand function  

 ( )A BG q qα β α β= − = − + q  (1) 

where is the number of simultaneous users of facility i . Consumers pay a 

price

( , )iq i A B=

Ap  to use facility A and Bp  to use facility B.  In addition, they incur a time cost, 

which depends on their marginal time cost γ  and on congestion, which is defined as the 

ratio between the number of (simultaneous) users { }, ,iq i A B=  and a facility’s capacity 

{ }, ,iK i A B= .  Congestion can be interpreted literally, as an increase in time costs, or it 

can be taken to reflect quality of service; this declines as the facility gets crowded. Like 

de Palma and Leruth (1989), we denote the inverse of capacity by iR , so that the time 

cost at each facility is { }, ,i iq R i A Bγ = .5  The marginal cost of capacity, { }, ,ic i A B= , is 

assumed to be constant.   

Throughout, we assume an interior solution, in which case consumer equilibrium 

requires that generalized prices (the sum of prices and time costs) at both locations are 

equal to the marginal willingness to pay.  The structural form of the demand system can 

be written as:   

 
[ ]
[ ]

A B A A

A B B B

G q q p q R

G q q p q R

γ

γ

+ = +

+ = +
A

B

                                                

 (2) 

where G(.) is given by (1) above. System (2) implicitly defines the reduced form demand 

functions that express demand at each facility as a function of prices and capacities at 

 
4 Several authors (e.g., Starkie (2001) and Zhang and Zhang (2003)) indeed argue that output may be a 
relevant partial objective for many airports.  
5 Using inverse capacity facilitates many of the derivations below. 
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both facilities.  Using superscript r for the reduced form demand functions, they can be 

written in general as: 

 
( )
( )

, , ,

, , ,

r
A A A B A B

r
B B A B A B

q q p p R R

q q p p R R

=

=
 (3) 

To derive the impact of price and capacity changes on demand, we differentiate system 

(2), write the result in matrix notation and apply Cramer’s rule. We obtain: 

 0
r
A

A

q R
p A

β γ∂ − − B= <
∂

 (4) 

 0
r
A

B

q
p A

β∂
= >

∂
 (5) 

 ( ) 0
r

A BA

A

q Rq
R A

γ β γ− −∂
= <

∂
 (6) 

 0
r
A B

B

q q
R A

βγ∂
= >

∂
 (7) 

where  

 ( )( ) 0A B A BA R R R Rγ γ β= + + >   

 

 Recalling that R indicates the inverse of capacity, the signs correspond to 

intuition: ceteris paribus, a higher price at a particular facility reduces demand at that 

facility and increases demand at the other; more capacity at a facility (i.e., conditional on 

demand being constant, better service quality) increases demand at that facility and 

reduces demand at the other. 

 

2.2 Stage two: Nash equilibrium in prices 

 

We take the point of view of facility A.  Its objective is to maximize profits: 

 max  
A

A
p A A A

A

cp q
R

π = −   

where demand is given by (3). Using (4), the first-order condition  

 5



    =0 
r

rA
A A

A

qp q
p
∂

+
∂

     (8) 

yields the following pricing rule (one easily verifies that the second-order conditions are 

satisfied as long as demand is downward sloping): 

  (.) (.)r r B
A A A A

B

Rp q R q
R

βγ γ
β γ

= +
+

      (9) 

A similar expression holds for facility B.  Expression (9) is conceptually identical 

to the ones obtained in Braid (1986), Verhoef at al. (1996), and Van Dender (2005).6 The 

optimal price, conditional on capacities at both facilities, consists of two components. 

The first one implies that each facility charges the marginal congestion cost at its facility, 

i.e. consumers pay for the marginal reduction in quality of service that their presence at 

the facility imposes on other (simultaneously present) users.  The second component is a 

positive markup; it increases when demand becomes less elastic and when the competing 

facility is more congestible.  Note that, in the Bertrand setting, congestion costs are the 

only source of market power: with γ=0, prices are equal to marginal production costs 

(normalized to zero). Otherwise said, in the absence of congestion costs, the textbook 

Bertrand paradox is obtained: price equals marginal cost. 

The pricing rule (9) gives an implicit representation of the price reaction function 

of facility A, conditional on capacities. By analogy we derive the price reaction function 

for B. Jointly the two reaction functions define the Nash equilibrium prices for given 

capacities, denoted as ( ),NE
A A Bp R R , ( ),NE

B A Bp R R , respectively. In appendix 1 we show 

that the price equilibrium is unique and stable. Moreover, we unambiguously obtain: 

 0
NE
A

A

p
R

∂
>

∂
  (10) 

 0
NE
A

B

p
R

∂
>

∂
 (11) 

                                                 
6 None of these papers study the role of capacity and capacity competition.  Verhoef et al. (1996) focus on 
the monopoly case but do allow for nonlinear demands and costs. Similarity of (9) to their result suggests 
that the expression also holds for more general specifications of demands and costs.  
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This says that a marginal capacity decrease at facility A as well as at facility B raises the 

Nash-equilibrium prices at A. In other words, a more congestible system is characterized 

by higher Nash-equilibrium prices. 

 

2.3 Stage one: Nash equilibrium in capacities 

   

The first order condition for profit maximization in stage 1 is: 

 2(.) 0
NE r

rA A
A A

A A

p dq cq p
R dR R

∂ A

A

+ + =
∂

 (12) 

where 

 

0 0 0 0 0

r r r NE r
A A A A A B

A A A A B

dq q q p q p
dR R p R p R

< < > > >

∂ ∂ ∂ ∂ ∂
= + +

NE

A∂ ∂ ∂ ∂ ∂
 (13) 

is the total effect of a capacity change in A on demand. It consists of the direct effect, 

holding prices constant, and indirect effects through Nash equilibrium price adjustments 

at the pricing stage of the game. The signs of the partial derivatives of the reduced form 

demand system and of the Nash-equilibrium prices – indicated beneath the expressions – 

were defined in (4), (5), (6), and in (10) and (11).  It follows from (10) and (12) that the 

sign of (13) is negative, i.e., the direct effect of capacity on reduced-form demand 

dominates the indirect effects through price reactions of capacity changes. Hence, 

marginally increasing RA – marginally decreasing capacity at A – reduces demand at A.  

Expression (12) basically equates marginal cost and benefit of a capacity change. 

Note that, combining (12) and (13) and using the first order condition for optimal pricing 

behavior in A (see (9)), condition (12) for optimal capacity choice can be formulated 

equivalently as follows: 

 2 0
r r NE
A A B A

A A
A B A A

q q p cp p
R p R R
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (14) 

This shows that the decision to supply higher capacity depends on capacity costs per unit 

(third term), on the extent to which capacity directly raises demand (first term), and on 

the extent to which it reduces demand via price adjustments by the competitor (second 
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term): higher capacity in A reduces the Nash equilibrium price of the competitor B, which 

in turn reduces demand in A.     

Equation (14) implicitly defines the reaction function in capacity for facility A. It 

explicitly depends on the competitor’s capacity, BR , and on the capacity cost Ac : 

   ( , )R
A A B AR R R c≡        

where the reaction function is denoted by superscript ‘R’. Rewriting (14) in implicit 

form:  

   2( , , ) 0
r r NE
A A B A

A B A A A
A B A A

q q p cR R c p p
R p R R

ψ ∂ ∂ ∂
= + +

∂ ∂ ∂
=    

and applying the implicit function theorem, we immediately find that a higher capacity 

costs shifts the reaction function upwards: 

  2

1 1 0A

A A

R
cA

A R R A

R
c R

ψ
ψ ψ

⎡ ⎤∂
= − = − >⎢ ⎥∂ ⎣ ⎦

           (15) 

Note that 
ARψ is negative by the second order condition for profit maximization in 

capacity.  

The slope of the capacity reaction function is given by: 

 B

A

R
RA

B R

R
R

ψ
ψ

∂
= −

∂
               (16) 

In general, one expects the sign of this slope to be ambiguous because two opposite 

forces are at play. More capacity in B provides A an incentive to defend its market share 

by responding with a capacity increase as well. The size of this effect will depend on 

capacity costs. However, higher capacity in B reduces Nash equilibrium prices at both 

facilities. Firm A then has an incentive to reduce capacity in order to increase prices (and 

at the same time deliberately creating extra congestion). However, despite the ambiguity 

in general, we show in Appendix 2 that, given the linear specifications of demand and 

cost functions, reaction functions in capacity are highly plausibly downward sloping. For 

example, we show that the slope will necessarily be negative at a symmetric equilibrium 

of the two-stage game.  

 We now turn to the impact of capacity costs on Nash equilibrium capacities and 

prices. Note that at a Nash equilibrium of the first stage of the game we have: 
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( ,

( ,

NE R NE )

)
A A B A
NE R NE
B B A B

R R R c

R R R c

≡

≡
     (17) 

Differentiating system (17) yields: 

  
1

R
A

NE
A A

R R
A BA

B A

R
R c

R Rc
R R

∂
∂ ∂

=
∂ ∂∂ −
∂ ∂

     (18) 

  
1

R R
B A

NE
A B

R R
B

A BB

B A

R R
R c R

R Rc
R R

∂ ∂
∂ ∂ ∂

=
∂ ∂∂ −
∂ ∂

     (19) 

  
1

R
B

NE
B B

R R
A BB

B A

R
R c

R Rc
R R

∂
∂ ∂

=
∂ ∂∂ −
∂ ∂

     (20) 

  
1

R R
A B

NE
B A

R R
A

A BA

B A

R R
R c R

R Rc
R R

∂ ∂
∂ ∂ ∂

=
∂ ∂∂ −
∂ ∂

     (21) 

These expressions imply that, if reaction functions are downward sloping and the 

denominator is positive so as to guarantee stability, an increase in the capacity cost in A 

reduces the Nash equilibrium capacity in A and raises it in B. Moreover, under these 

assumptions, (18)-(19) and simple algebra show that a simultaneous increase in capacity 

costs in both A and B raises equilibrium values of NE
AR  and NE

BR .   

 The effect of capacity costs on the Nash equilibrium price at facility A is given 

by: 

   
NE NE NE NE NE
A A A A

A A A B

dp p R p R
dc R c R c

∂ ∂ ∂ ∂
= + B

A∂ ∂ ∂ ∂
     (22) 

The overall impact is the sum of two terms; the first one is positive, the second one is 

negative, because capacity costs in A raise Nash equilibrium capacities in B. If the direct 

effects dominate the indirect effects due to capacity adjustments at the other facility, a 

capacity cost increase induces a facility to raise prices.     
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 We conclude this section with an important remark. Unlike the price reaction 

functions at stage two, the capacity reaction functions are nonlinear, so that multiple 

equilibria may result. This issue will be illustrated in the numerical application. 

Moreover, stability of equilibria is not guaranteed. Not surprisingly, capacity costs are 

likely to be crucial in determining stability of equilibria, because they directly affect 

slopes of the capacity reaction functions. To see this, use (16) to get: 

  
2

2( )

B A

A B

A

R R
R RR

A A

B A R

AR c c
R c

ψ ψ
ψ ψ

ψ

∂ ∂
−

∂ ∂
= −

∂ ∂
∂   

Simple algebra shows that 0BR

Ac
ψ∂

=
∂

and 3

2 0AR

A Ac R
ψ∂

= − <
∂

, so that we have 

   
2

3 2

2
( )( )

B

A

R
RA

B A A R

R
R c R

ψ
ψ

∂
= −

∂ ∂
 

If reaction functions are downward sloping then 
BRψ <0 so that higher capacity costs in A 

raise the slope (i.e., make it less negative); it becomes smaller in absolute value. These 

findings suggest that, starting from a symmetric stable equilibrium, sufficiently low 

capacity costs may generate unstable symmetric equilibria. This useful insight will also 

be illustrated in the numerical application.   

   

2.4 Duopoly, monopoly and the social optimum 

 

The comparison of different market structures provides further insight into the 

effects of the oligopolistic interaction on which this paper focuses.  In this subsection we 

derive price and capacity rules for a monopolist and for a social welfare-maximizer. 

Assume first that both facilities are operated by a single profit-maximizer. Profits are 

given by: 

 
, ,

( , , , )r i
i i A B A B

i A B i A B i

cp q p p R R
R= =

−∑ ∑   

and maximized with respect to the two prices and capacity levels. In Appendix 3 we 

show that the first-order conditions yield, after simple manipulation: 
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 ( ) { }, ,i A B i ip q q q R i A Bβ γ= + + ∈  (23) 

 {
1/ 2

1 , ,i
i i

q i A B
R c

γ⎛ ⎞
= ∈⎜ ⎟
⎝ ⎠

}  (24) 

According to (23), the price at each facility is the sum of the marginal congestion cost at 

that location (second term) and a term relating to the elasticity of demand.  Comparing 

to(9), it follows that the elasticity-related markup is higher than in the duopoly case.  

According to (24), capacity – the inverse of Ri – is inversely related to the marginal cost 

of capacity, it is increasing in the marginal value of time, and it is proportional to demand 

at the facility. Because the monopolist fully controls all instruments, his choice of 

capacity does not directly take account of effects on the equilibrium price.  This contrasts 

to the duopoly case, where capacity choices do affect the Nash equilibrium price through 

strategic interactions. 

Next, assume the facilities are operated by a welfare-maximizing government. It 

maximizes the difference between total net surplus and total social costs: 

 [ ]
, ,0

( )
iq

i
i i

i A B i A B i

cG u du G p q
R= =

⎛ ⎞ ⎛ ⎞
− − +⎜ ⎟ ⎜⎜ ⎟ ⎝ ⎠⎝ ⎠

∑ ∑∫ ⎟   

In Appendix 3, we derive the following price and capacity rules.  

 { }, ,i i ip q R i A Bγ= ∈  (25) 

 {
1/ 2

1 , ,i
i i

q i A B
R c

γ⎛ ⎞
= ∈⎜ ⎟
⎝ ⎠

}  (26) 

Social welfare maximization internalizes the externality: the price equals the marginal 

external congestion cost. The capacity rule is identical to that of the monopoly case (but 

as it holds at a different price and a different level of demand, the optimal capacity level 

will be different). Note that, since there are constant returns to scale in the provision of 

capacity, optimal pricing and optimal provision of capacity lead to exact cost recovery 

(see, e.g., Small (1992)). This follows because (25) implies total revenues equal to 

2
i i i i

i i
p q q Rγ=∑ ∑ , and (26) allows us to write total expenditures as 2i

i i
i ii

c q R
R

γ=∑ ∑ . 

Self-financing facilities imply that the social welfare maximum can be implemented 

 11



without distortionary taxes, viz. by a combination of congestion tolls and competitive 

pricing at each facility. The competitive price equals the marginal private production cost 

at each facility (here normalized to zero). 

Comparing prices, capacity levels and quality of service under the three market 

structures in more detail leads to a number of observations. First, while capacity levels 

differ between the monopoly outcome and the social welfare maximum, the quality levels 

(as measured by time costs of using a facility, i iR qγ ) are identical. To see this, note that 

the optimal capacity rules (24) and (26) imply that, both under monopoly and at the social 

welfare optimum, the time cost equals 

     (27) 1/ 2( )i i iR q cγ γ=

Hence, a monopolist has no incentive to distort quality, as all benefits of providing it 

accrue to the facility itself. This observation is consistent with Spence (1975) 7, who 

clarifies that the result is contingent on the additive structure of the generalized price.  

Second, whereas a monopolist does not distort quality compared to the social 

optimum, a duopolist unambiguously provides lower quality. To show this formally, 

combine the first-order conditions for the optimal price and the optimal capacity level 

(expressions (8) and (14), respectively) for facility A, and use (4), (5) and (6). This leads 

to: 

2

NE
B A

A A
B A

p cq q
AR R R

βγ
β γ

⎡ ⎤⎛ ⎞ ∂
− =⎢ ⎥⎜ ⎟+ ∂⎝ ⎠⎣ ⎦

 

Multiplying both sides by ( 2
ARγ ) and slightly manipulating the result yields: 

[ ]( )1/ 2
A A AR q c Zγ γ= +    (28) 

where      [ ]
2

0
NE

A A B

B A

q R pZ
R R

γβ
β γ

∂
= >

+ ∂
. 

Comparing (28) and (27) shows that the time cost under duopoly will exceed the socially 

optimal one. Hence the duopolist offers lower service quality.  

                                                 
7 Spence (1975) shows that quality at the monopolists’ output level is below (above) the socially optimal 
level when the partial derivative of willingness to pay with respect to output and to quality is negative 
(positive).  In our linear and additive specification of demand this derivative is zero, so that the monopolist 
supplies optimal quality.   
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The intuition for this finding lies in the strategic price responses to capacity 

changes under duopoly. A capacity increase reduces the generalized cost and, therefore, 

boosts demand at both facilities, implying that the benefits of a capacity increase at one 

location partially accrue to the other. This externality is fully internalized in both the 

social optimum and the monopoly case, but it is not under duopoly. In the latter case, for 

example, a capacity increase at facility A affects not only capacity at the competing 

facility B but also reduces the price there. The price reduction at the competing facility 

negatively affects demand at A. Note that this strategic price response is clearly visible in 

the term Z appearing in (28). If there was no price response to a capacity increase by the 

competitor, Z=0 and the socially optimal service quality would result. The price response, 

however, implies a ‘leakage of benefits’ of a capacity investment to the competitor to 

which a facility reacts by providing less capacity than it otherwise would. The joint 

implication of price and capacity choice is lower quality, as shown by (28). The 

numerical analysis in the next section confirms this finding.  

Third, together with (23) and (25), equal quality of service levels immediately 

imply monopoly prices that necessarily exceed prices at the social optimum. Moreover, 

with linear demands, duopoly prices will not only structurally but also numerically be 

between those under monopoly and at the social optimum. Indeed, (8) implies that a 

duopolist will operate where the price elasticity of reduced-form demand equals minus 

one, whereas the monopolist operates at an elasticity exceeding one in absolute value.  

 

 

3. Numerical analysis 

This section explores the properties of the capacity-price game using 

parameterized versions of the model analyzed in the previous section.  All the scenarios 

use ex ante symmetric parameterizations.  Parameters were chosen to produce reasonable 

elasticities of demand, but they do not reflect a particular real world empirical example. 

In Section 3.1 we discuss a parameterization for which the model produces a 

single, stable and symmetric Nash equilibrium (the ‘central scenario’).  This scenario is 

used to illustrate the sensitivity of the results to changes in economic parameters and to 

compare the consequences of strategic interactions with monopoly and the welfare 
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optimum. Section 3.2 considers alternative values of marginal capacity costs, and 

illustrates that ex ante symmetric parameterizations may lead to multiple Nash equilibria.   

 

3.1 Central scenario: duopoly, monopoly and surplus maximization   

 Table 1 presents the parameters selected for the central scenario (rows 1 through 

4) and the results (rows 5 through 21) for the unique and stable Nash-equilibrium of the 

duopoly game, the monopoly outcome, and the surplus-maximizing solution8.  Figure 1 

depicts the capacity reaction functions of the duopoly game.9  The capacity reaction 

functions are negatively sloped, and their intersection produces a single, stable and 

symmetric Nash equilibrium for this particular set of parameters.  The negative slope 

implies that the optimal response to a capacity increase at the competing facility is to 

reduce capacity at the own facility, as was shown to be the case for symmetric equilibria. 

  
Figure 1  Inverse capacity reaction functions for the Nash equilibrium of the central scenario  
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Table 1 shows that prices and profits in the monopoly outcome are higher than in 

                                                 
8 In all cases reported, second-order conditions were satisfied.  
9 The price reaction functions are not shown; they are linear and upward-sloping, producing a single and 
stable Nash equilibrium in prices, as was shown to be a general property in section 2. 
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the Nash equilibrium. While monopoly capacities are below duopoly capacities, service 

quality (the inverse of time costs) is higher in the monopoly case than under duopoly. As 

shown in section 2, service quality is the same in the monopoly and the social welfare 

maximum. This confirms the insight that, while the monopolist distorts output, service 

quality is optimal from the social point of view.  In contrast, duopolists cannot capture as 

much surplus generated by high quality as a monopolist can: since an expansion of a 

facility’s capacity implies an expansion of the overall network, the benefits of capacity 

expansion partly accrue to the competitor. The consequence is lower service quality 

(higher time costs) in the duopolistic equilibrium as compared to the monopoly or the 

social welfare maximum.  The implication is that, whereas price competition under 

duopoly benefits the consumer, capacity competition is detrimental to consumer welfare.  

However, despite the quality distortion under duopoly, consumer surplus and welfare are 

lower in the monopoly case than under duopoly due to the output distortion of 

monopolistic pricing.  
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Table 1 Parameters and solutions of the central scenario under alternative assumptions on market 
structure  

Parameter or variable  Symbol Duopoly:  
Nash 

equilibrium  

Monopoly  Surplus 
maximization  

1. Intercept inverse demand function   α  13.8  
2. Slope inverse demand function   β  0.2  
3. Marginal value of time  γ  1  
4. Marginal cost of capacity  c  1  
5. Quantity demanded  q  47.671  29.500  59.000  
6. Quantity demanded at A  q

A
23.836  14.750  29.500  

7. Quantity demanded at B  q
BB

23.836  14.750  29.500  

8. Generalized price  g  4.266  7.900  2.000  
9. Price at A  p

A
2.717  6.900  1.000  

10. Price at B  p
BB

2.717  6.900  1.000  

11. Time cost to A  a
A

1.548  1.000  1.000  

12. Time cost to B  a
BB

1.548  1.000  1.000  

13. Inverse capacity at A  R
A

0.065  0.068  0.0339  

14. Inverse capacity at B  R
BB

0.065  0.068  0.0339  

15. Capacity at A  K
A

15.393  14.749  29.500  

16. Capacity at B  K
BB

15.393  14.749  29.500  

17. Profits at A  π
A

49.375  87.025  0  

18. Profits at B  π
BB

49.375  87.025  0  

19. Generalized price elast.  ε
QG

-0.45  -1.34  -0.17  

20. Money price elast. at A  ε
QPA

-0.29  -1.17  -0.08  

21. Money price elast. at B  ε
QPB

-0.29  -1.17  -0.08  

 

Table 2 shows the implications of reducing the marginal value of time or raising 

the marginal cost of capacity.  Compared to Table 1, in Table 2 we have reduced, first, 

the value of time and, second, the capacity cost from 1 to 0.5.  The linear structure of the 

model implies that the effects of an equal percentage reduction in the marginal value of 

time or in the marginal cost of capacity on the relevant properties of the equilibrium are 

identical.10  Intuitively, reducing the value of time directly reduces the time cost of 

congestion; reducing capacity costs indirectly reduces the cost of congestion by raising 

                                                 
10 A reduced value of time implies that physical congestion levels are less costly, while a reduced marginal 
cost of capacity implies that alleviating congestion is cheaper.  The latter leads to higher capacity levels in 
the social surplus maximum. 
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capacity. In this model, the effects of both changes on capacity expenditures are identical.  
 
Table 2 Parameters and solutions for reduced marginal capacity costs or reduced marginal value of 
time, under alternative assumptions on market structure   

Parameter or variable  Symbol Duopoly:  
Nash 

equilibrium  

Monopoly  Surplus 
maximization  

1. Intercept inverse demand function   α  13.8  
2. Slope inverse demand function   β  0.2  
3. Marginal value of time  γ  1 (0.5)  
4. Marginal cost of capacity  c  0.5 (1)  
5. Quantity demanded  q  51.227  30.964  61.929  
6. Quantity demanded at A  q

A
25.614  15.482  30.964  

7. Quantity demanded at B  q
BB

25.614  15.482  30.964  

8. Generalized price  g  3.554  7.607  1.414  
9. Price at A  p

A
2.286  6.900  0.707  

10. Price at B  p
BB

2.286  6.900  0.707  

11. Time cost to A  a
A

1.269  0.707  0.707  

12. Time cost to B  a
BB

1.269  0.707  0.707  

13. Inverse capacity at A  R
A

0.049  0.046  0.023 (0.046)  

14. Inverse capacity at B  R
BB

0.049  0.046  0.023 (0.046)  

15. Capacity at A  K
A

 20.19 21.90  43.78 (21.90)  

16. Capacity at B  K
BB

 20.19  21.90  43.78 (21.90) 

17. Profits at A  π
A

48.449  95.88  0  

18. Profits at B  π
BB

48.449  95.88  0  

19. Generalized price elasticity  ε
QG

-0.35  -1.23  -0.11  

20. Money price elasticity at A  ε
QPA

-0.22  -1.11  -0.06  

21. Money price elasticity at B  ε
QPB

-0.22  -1.11  -0.06  

 

We find that reducing the marginal value of time implies that capacity (or service 

quality) is valued less by consumers, so that less of it is provided under all market 

structures (compare Tables 1 and 2).  Time costs fall with lower marginal values of time, 

but the reduction is limited through the reduction of capacity. Output increases in all 

cases. The effects on profits differ according to market structure, however. In the 

monopoly solution, prices do not depend on the marginal value of time, so that profits 

increase. In the Nash equilibrium under duopoly, less congestion means lower prices, and 

profits fall despite the increase of output.  A decline in profits after a capacity cost 

reduction may seem counterintuitive. The explanation is that the cost reduction in the 
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provision of capacity reduces costs and raises demand at given prices, but it also 

intensifies competition and reduces prices, indirectly reducing revenues. If the latter 

effect dominates, lower capacity costs reduce profits.11 With regard to reductions in 

values of time, comparison of Tables 1 and 2 shows that profits fall as values of time fall.  

Since the opportunity cost of time increases with economic growth, this can be 

interpreted as saying that congestion as a source of market power becomes more 

important as the economy grows. 

In Table 3 we look at the implications of changes in the slope of the demand 

function. We find that prices, time costs and, therefore, generalized prices are not 

affected at all (compare Tables 1 and 3). This is related to the linear structure of the 

model. With linear congestion, demand and capacity cost functions, setting β  at half its 

initial value induces facilities to provide twice the initial capacity at twice the initial 

output, and time costs remain constant. Note that the result is contingent on the two-stage 

structure of the game, allowing firms to adjust capacities: in a one-stage pricing game 

with constant capacities the Bertrand price does directly depends on the slope of the 

demand function (Van Dender, 2005).  Although the perfect proportionality of 

adjustments in capacity and demand is specific to the linear model structure (more 

specifically, to the additive structure of the generalized price and to the constant returns 

in the provision of capacity), we expect prices not to be very sensitive to how demand 

responds to cost increases in more general models as well. The intuition for the result is 

simply that providing capacity contributes more to profit when demand is more sensitive 

to reductions in time costs, so that more capacity is provided.    

The above implies that the price elasticity of the (structural) demand function is 

independent of the slope of the inverse demand function under each assumption on 

market structure, see Tables 1 and 3.  Given the linear demand function, it is clear that its 

absolute value is largest (and above one) in the monopoly outcome, smaller in the 

duopoly, and smallest in the welfare maximum.   

                                                 
11 One easily shows that the effect of a capacity cost increase may raise or reduce profit of a facility 
depending on the size of the different effects mentioned above. So the finding in Table 2 is not a general 
result. For example, an increase in capacity costs starting from relatively high initial capacity cost levels 
does reduce profits.  
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Table 3 Parameters and solutions for increased absolute value of the slope of inverse demand 
function under alternative assumptions on market structure 

 Parameter or variable  Symbol Duopoly:  
Nash 

equilibrium  

Monopoly  Surplus 
maximization  

1. Intercept inverse demand function   α  13.8  
2. Slope inverse demand function   β  0.4  
3. Marginal value of time  γ  1   
4. Marginal cost of capacity  c  1  
5. Quantity demanded  q  23.836  14.750  29.500  
6. Quantity demanded at A  q

A
11.918  7.375  14.750  

7. Quantity demanded at B  q
BB

11.918  7.375  14.750  

8. Generalized price  g  4.266  7.900  2.000  
9. Price at A  p

A
2.717  6.900  1.000  

10. Price at B  p
BB

2.717  6.900  1.000  

11. Time cost to A  a
A

1.548  1.000  1.000  

12. Time cost to B  a
BB

1.548  1.000  1.000  

13. Inverse capacity at A  R
A

0.130  0.136  0.068  

14. Inverse capacity at B  R
BB

0.130  0.136  0.068  

15. Capacity at A  K
A

7.692  7.353  14.706  

16. Capacity at B  K
BB

 7.692  7.353  14.706 

17. Profits at A  π
A

24.687  43.512  0  

18. Profits at B  π
BB

24.687  43.512  0  

19. Generalized price elast.  ε
QG

-0.45  -1.34  -0.17  

20. Money price elast. At A  ε
QPA

-0.28  -1.17  -0.08  

21. Money price elast. At B  ε
QPB

-0.28  -1.17  -0.08  

 
 
3.2 Marginal costs of capacity and asymmetric equilibria 
 
 We now focus on the duopoly model, and look in more detail at the effect of 

changes in marginal capacity costs, while retaining ex ante symmetry: both facilities face 

identical demand and cost conditions before the price-capacity game is played.  The main 

insight from this exercise is that capacity costs strongly affect the nature of the resulting 

equilibria12. At relatively high values of capacity costs we find a stable, symmetric Nash 

equilibrium. However, for relatively low values of capacity costs, the only stable 

equilibria of the two-stage game are asymmetric.     

                                                 
12 Higher capacity costs and more inelastic structural demand have similar effects on the shape of reaction 
functions. Results are available from the authors. 
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When marginal costs of capacity decline, the capacity reaction functions become 

more convex and steeper in the neighborhood of the symmetric Nash-equilibrium, as is 

illustrated in Figure 2. The symmetric intersections of these reaction functions are on a 

ray through the origin.  For relatively high capacity costs the reaction functions intersect 

once and produce a single symmetric Nash equilibrium. Increased convexity at low 

marginal capacity costs implies that, below a threshold value for marginal capacity costs, 

the symmetric equilibrium becomes unstable. The model then yields multiple 

intersections, and stable asymmetric equilibria result.  

 
Figure 2 Inverse capacity reaction functions for various marginal capacity cost levels 
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To illustrate the existence of multiple asymmetric equilibria at low capacity costs, 

Figure 3 shows the reaction functions for both facilities for the case where marginal 

capacity costs have been reduced to 0.25, keeping all other parameters at the level of the 

central scenario.  It shows that there are three Nash equilibria, of which the asymmetric 

ones are stable.  Table 4 shows the (unstable) symmetric and the stable asymmetric 

equilibria.  Total output in the latter equilibria is slightly lower than in the symmetric 
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unstable equilibrium, while the generalized price is slightly higher; this indicates that the 

asymmetry reduces consumer surplus.   

 
 
 
Figure 3 Inverse capacity reaction functions and Nash equilibria for marginal capacity costs of 0.25 
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The emergence of asymmetric equilibria can be interpreted as endogenous 

product differentiation at low capacity costs and/or relatively inelastic structural demand.  

The interpretation is that asymmetric outcomes are more likely when competition is more 

intense. Low capacity costs affect the slope of capacity reaction functions and make 

capacity competition more intense. Relatively inelastic demand implies intense price 

competition. Note that in asymmetric equilibria the large facility (here labeled facility B) 

caters a larger share of the market than the small facility.  It charges a higher price, but 

time costs are lower because the capacity investment is larger.  So the picture emerges of 

a market served by a large facility that provides high quality at a high price, and by a 

smaller facility that provides lower quality at a lower price. While the large facility 
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grosses a larger profit, profit per unit of capacity investment is larger at the small facility 

(2.17 instead of 1.71 at the large facility). 

Finally note that further reductions in the marginal cost of capacity result in more 

asymmetric equilibria. When capacity costs are very low and/or demand is highly 

inelastic, the asymmetric equilibria converge to a corner solution. In that case there is no 

stable duopoly equilibrium, and the outcome is effectively the monopoly solution.  This 

produces an extreme form of asymmetry, where only one facility makes positive 

investments in capacity. The relevant solution in a one shot game then is the monopoly 

solution, in the sense that once capacity investments are made and one facility has 

decided not to enter the market, the other facility is in a position to charge monopoly 

prices.    
 
 
 
Table 4 Parameters and solutions for reduced marginal capacity costs 

 Parameter or variable  Symbol Symmetric 
equilibrium - unstable 

Asymmetric 
equilibrium - stable 

1. Intercept inverse demand function   α  13.8  
2. Slope inverse demand function   β  0.2 
3. Marginal value of time  γ  1 
4. Marginal cost of capacity  c  0.25 
5. Quantity demanded  q  53.978 53.230 
6. Quantity demanded at A  q

A
26.989 21.931 

7. Quantity demanded at B  q
BB

26.989 31.299 

8. Generalized price  g  3.004 3.154 
9. Price at A  p

A
1.945 1.841 

10. Price at B  p
BB

1.945 2.298 

11. Time cost to A  a
A

1.059 1.313 

12. Time cost to B  a
BB

1.059 0.856 

13. Inverse capacity at A  R
A

0.039 0.060 

14. Inverse capacity at B  R
BB

0.039 0.027 

15. Capacity at A  K
A

25.476 16.670 

16. Capacity at B  K
BB

25.476 36.753 

17. Profits at A  π
A

46.124 36.194 

18. Profits at B  π
BB

46.124 62.788 

19. Generalized price elast.  ε
QG

-0.28 -0.30 

20. Money price elast. at A  ε
QPA

-0.18 -0.17 

21. Money price elast. at B  ε
QPB

-0.18 -0.22 
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4. Concluding remarks 

This paper has studied the duopolistic interaction between congestible facilities 

that supply perfect substitutes and that make sequential decisions on capacities and 

prices.  Congestion increases consumers’ time costs of using a facility – alternatively, it 

reduces the quality of service - and is determined by the ratio of the number of users and 

capacity.  Comparison of the duopoly outcome to the monopoly and the surplus 

maximizing results leads to a number of insights.  First, capacity provision and service 

quality are less than socially optimal in the duopoly solution. This contrasts with the 

monopoly outcome, where pricing and capacity provision are such that the monopolist 

provides the socially optimal level of service quality. Since duopoly prices are lower than 

monopoly prices we find that, whereas price competition between duopolists yields 

benefits for consumer, capacity competition is harmful. Second, higher marginal capacity 

costs may raise profits. Third, asymmetric Nash-equilibria may result even when firms 

are ex ante identical.  More specifically, when capacity is cheap or demand is relatively 

inelastic, the only stable equilibria are asymmetric.  In such an asymmetric equilibrium, 

there is one large facility that provides high quality at a high price, and a small facility 

with a smaller market share and lower quality and prices.  This implies endogenous 

product differentiation by ex ante identical facilities.   
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Appendix 1. Properties of the price reaction functions and the Nash equilibrium 

prices 

The optimal pricing rules for A (see (9)) and its equivalent for B are implicit 

representations of the price reaction functions (superscript R) ( ), ,R R
A A B A Bp p p R R=  and 

( , ,R R
B B A A B )p p p R R= , conditional on capacities. To find the slope of the price reaction 

function for A, write the price rule in implicit form as follows: 

 ( , , , ) ( , , , ) 0r B
A B A B A A A B A B A

B

Rp p R R p q p p R R R
R

γβω γ
β γ

⎡ ⎤
= − + =⎢ +⎣ ⎦

⎥ ,  

where the dependence of demand on capacities and prices, see (3), has been made 

explicit. Then use the implicit function theorem to find: 
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Analogous results hold for B. As shown by (A1.1), the price reaction functions, 

conditional on capacity, are linear in the price of the competing facility and upward 

sloping. The slope is between zero and one, guaranteeing (given positive intercept, which 

is easily shown to be the case) a unique interior Nash equilibrium in prices, for given 

capacities.  As is clear from(A1.3), the reaction of prices to capacities at the competitor’s 

facility is not linear.  As could be expected, the expression implies that a marginal 

capacity decrease at B (i.e. a marginal increase in RB) leads to a higher price at A.     B

Remarkably, equation (A1.2) shows that along the reaction function, a facility’s 

price does not respond to a change in its capacity determined at the previous stage of the 

game. Intuitively, there are two opposing effects from a marginal capacity increase.  The 
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first one is that, holding demand in A constant, an increase in capacity in A reduces the 

time cost in A, so reducing the optimal price. The second effect is that more capacity at A 

increases demand in A, and this increases both the time cost and the markup, raising the 

price. Given the specific model structure used (linear demands and congestion cost 

functions), one easily shows that these two effects cancel out. Of course, in more general 

models (e.g. with nonlinear congestion functions), the two effects will have opposite 

signs but their absolute size need not be identical. 

The Nash-equilibrium prices, for given capacities, are denoted ( ),NE
A A Bp R R , 

( ),NE
B A Bp R R , respectively. Formally, they are determined by the intersection of the 

reaction functions: 

  
( ) ( )
( ) ( )

, ,

, ,

NE R NE
A A B A B A B

NE R NE
B A B B A A B

p R R p p R R

p R R p p R R

≡

≡

,

,
 (A1.4) 

The sign of the effect of a marginal capacity increase at A and at B on these prices is 

determined by differentiating system (A1.4). We find, using (A1.1)-(A1.3) and the 

analogous effects for the reaction function in B:  
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By (A1.1) and its equivalent for B, the denominator of these expressions is positive and 

smaller than one.  By (A1.1) and (A1.3), the numerator is positive. 

 

Appendix 2 The slope of the capacity reaction functions 

 In this appendix we study the slope of the capacity reaction functions; in 

particular, we show that at a symmetric Nash equilibrium of the two-stage game the 

reaction functions of the capacity game are downward sloping.  

 The slope can be written in general as: 
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where (.)ψ is the reaction function in implicit form defined in section 2.3, and 
ARψ is 

negative by the second order condition for profit maximizing capacity choice. The 

numerator can be written as: 
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Using results derived earlier in the paper we obtain expressions for the individual terms 

appearing in this equation.   

 First, differentiating (6) with respect to inverse capacity in B yields: 
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where A >0 was defined in section 2.1. Note that the above expression is negative at an 

ex post symmetric equilibrium ( r
Aq qr

B= ). At a sufficiently asymmetric equilibrium it 

may be positive.  

 Second, differentiating the equivalent expression of (A1.6) for the price at B 

yields:   
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where the superscript ‘R’ refers to the reaction functions in prices at the second stage of 

the game. Note that the expression is necessarily negative for our specification, 

because 0
R
A

B

p
R
∂

>
∂

 (see (A1.3)) and, using the equivalent of (A1.3) for the price at B, we 

easily show
2 R
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<0.  
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 Third, similar procedures as before easily show that: 
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Again, this is negative. Moreover, from the first order condition of the capacity choice 

problem (see (14)) we have that: 

  2 0
r r NE
A A B A

NE
A B A A A

q q p c
R p R p R
∂ ∂ ∂

+ = −
∂ ∂ ∂

<      (A2.5) 

Finally, earlier results reported in the paper imply: 

  0, 0, 0
r NE NE
A B A

B A B

q p p
p R R
∂ ∂ ∂

> > >
∂ ∂ ∂

 

 We have now determined the signs of all terms appearing in 
BRψ as given in 

(A2.1). Using these results implies that the slope of the reaction function in capacities is 

highly plausibly downward sloping. Unless (A2.2) is very largely positive (which 

requires an extreme form of asymmetry) we have 0
BRψ < , implying the slope of the 

capacity reaction function is negative. At a symmetric equilibrium (so that (A2.2) is 

necessarily negative), it follows that 0
BRψ < . As a consequence, we have shown that, for 

our specifications and at a symmetric equilibrium (we have used the first order conditions 

of both the price and capacity game as well as the symmetry assumption to show the 

result), the slope of the reaction function must be negative.  

 

Appendix 3 The monopoly case and the social optimum 

Assume first that both facilities are operated by a single profit-maximizer.  Profits 

are given by: 

 
, ,

( , , , )r i
i i A B A B

i A B i A B i

cp q p p R R
R= =

−∑ ∑   

and maximized with respect to the  two prices and capacity levels. The first-order 

conditions can be written as: 
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These equations can be manipulated, using the reduced-form derivatives derived before 

(see (4)-(7) in the main body of the paper), to yield:  

 ( ) { }, ,i A B i ip q q q R i A Bβ γ= + + ∈   

 {
1/ 2

1 , ,i
i i

q i A B
R c

γ⎛ ⎞
= ∈⎜ ⎟
⎝ ⎠

}   

 

Next, assume the facilities are operated by a welfare-maximizing government. It 

maximizes the difference between total net surplus and total social costs: 

 [ ]
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i

  

where, as before, demands are given by (3) and G is defined in (2). This last expression 

implies 

    i iG p R qγ− =  

Using this information, the first order conditions can be written as: 
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Again using (2), we have 2 , ,i i i i iG R q p R q i Aγ γ− = − = . Substitution then 

immediately implies the following price and capacity rules.  

 { }, ,i i ip q R i A Bγ= ∈   

 {
1/ 2

1 , ,i
i i

q i A B
R c

γ⎛ ⎞
= ∈⎜ ⎟
⎝ ⎠

}   
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Appendix 4 Alternative assumptions on firms’ objectives 

 Many congestible facilities (airport, ports, roads) are publicly owned or are 

strongly regulated, so it is reasonable to consider objectives other than pure profit 

maximization. For example, Starkie (2001) and Zhang and Zhang (2003) argue that 

output is a relevant partial objective for many airports that generate revenues out of 

concessions. Moreover, recent experiences in Europe also suggest that the social role of 

airports encompasses more than profit, but that generating activities in itself is a valid 

objective, for example, for reasons of employment opportunities. This section therefore 

briefly explores the equilibria that result when facilities’ objectives consist of a weighted 

sum of output and profit.  When no weight is given to profits, the facilities are output 

maximizers. When no weight is given to output, they are profit-maximizers, and the 

analysis of the previous sections is obtained.  Again, we look at look at alternative 

ownership arrangements: duopoly refers to separate ownership of the facilities, monopoly 

implies joint ownership13.   

 

Duopoly: separate ownership 

 

Suppose each facility is interested both in generating output (e.g. because of 

lobbying by concessionary activities at an airport) and in profits.  Assume that output and 

profits receive an exogenous weight, normalize the output weight to one, and denote the 

profit weight by μ>0.14 In stage 2 of the game, prices are set; the owner of facility A 

maximizes: 

 A
A A A

A

cq p q
R

μ
⎛ ⎞

+ −⎜
⎝ ⎠

⎟

                                                

  

 
13 There is a potential semantic issue here, as duopoly and monopoly are usually understood to imply both a 
particular ownership structure and the profit maximization objective. Strictly speaking, when profit 
maximization is replaced by a different objective, one could argue that the duopoly and monopoly labels 
are no longer appropriate.  We stick to this terminology, however, even under conditions of output 
maximizing behavior. 
14 Using profits leads to the same results as using an exogenously defined allowable deficit. 
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subject to the consumer equilibrium constraints; i.e., demand in is given by the reduced-

form demands derived before. The first-order conditions lead to the following pricing 

rule, conditional on capacities:  

 1B
A A A A

B

Rp q R q
R

βγ γ
β γ μ

= +
+

−   

Compared to the case of profit-maximizing duopolists, see (9), the price rule is 

amended by the extra term –1/μ.  When this term is zero (i.e. as μ approaches infinity), 

profits completely outweigh output in the objective, and (9) is obtained.  When μ 

becomes very small, output maximization becomes the main objective, and the last term 

dominates, implying a subsidy (i.e., prices become negative). For smaller μ, strategic 

interactions become relatively less important: output-maximization is obtained by 

subsidies (and a complete disregard for congestion costs), whatever the other facility 

does. In general, the strategic capacity setting decisions pertain to the profit-maximizing 

part of the objective function, so that the structure of the first stage of the game (capacity 

choices) is strongly similar to the profit-maximizing duopoly case. 

 

 

Monopoly: joint ownership 

 

Now consider joint ownership of both facilities; it maximizes: 

 
, ,

i
i i i

i A B i A B i

cq p q
R

μ
= =

⎛ ⎞
+ ⎜

⎝ ⎠
∑ ∑ − ⎟   

subject to reduced-form demands, i.e., satisfying the consumer equilibrium constraints. 

The corresponding price and capacity rules are: 

 1 ; , , ,i i ip q q R i j A B iβ γ
μ

= + − = ≠ j   

 

1
21 ; ,i

i i

q i A B
R c

γ⎛ ⎞
= =⎜ ⎟
⎝ ⎠

  

The capacity provision rule is the same as for a profit maximizing monopolist and 

a social welfare maximizer. Not surprisingly, the price rule again reduces to that of a 
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profit maximizing monopolist when 1 0μ → . Interestingly, for 1
qμ β=  the welfare 

maximizing rule is obtained. Intuitively, 1
qμ β= indicates that output is not the only 

objective (and becomes less important as output is high and β is large), because supply is 

‘costly’.  

 We calculate the outcome of the model where a weighted sum of output and 

profits is maximized under joint and separate ownership of the facilities, using the 

parameters of the scenario with inelastic demand and high capacity costs.  The key results 

for various values of μ, the exogenous weight of profits, are summarized in Table A.4.1. 

 
Table A.4.1 Key Results for mixed objective  

 Exogenous weight of profits in the objective function (μ) 
 μ−−>+inf μ=1.5 μ=1 μ=0.5 μ−−>0 
Separate ownership 
Output 51.8 52.1 52.2 52.7 56.9 
Price 10.8 10.2 9.9 8.9 0.05 
Time cost 5.67 5.69 5.71 5.75 6.14 
Capacity 4.56 4.57 4.57 4.58 4.63 
Single ownership 
Output 29.5 29.67 29.75 30.00 57.28 
Price 60 59.67 59.50 59.00 4.4 
Time cost 1 1 1 1 1 
Capacity 14.75 14.83 14.87 15.00 28.64 
 
  

 In the leftmost column, the profit weight approaches infinity and the same results 

are obtained as under pure duopoly and pure monopoly. When the relative weight of 

output increases, output increases and prices decrease due to a lower weight on profit.  

The difference between separate (duopoly) and single (monopoly) ownership lies in the 

quality of service.  With single ownership, the quality of service is independent (and 

equal to the socially optimal level of quality) of the relative weights of profits and output.  

In the duopoly case, putting more weight on output (reducing μ) leads to a deterioration 

of the quality of service.   
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