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Abstract

We study the problem of precluding biological invasions caused by ships transporting
internationally traded goods in containers between different regions of theworld. Using the long run
expected net cost (LRENC) of inspections as the apposite manageria objective, we address the
following important question: Given that inspectionisacyclical activity, isthe LRENC lower when
a port manager’s inspector inspects cargo upon the arrival of a specified number of containers
(container policy) or isthis LRENC lower when thisinspector inspects cargo at fixed pointsin time
(temporal policy)? We construct a queuing theoretic model and show that in an inspection cycle,
irrespective of whether the inspection policy choice is made on the basis of an explicit optimization
exercise or on the basis of rules of thumb, the container policy is superior to the temporal policy

because the container policy resultsin lower LRENC from inspection activities.
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1. Introduction

It is now well known that maritime trade in goods comprises a significant fraction of the
world’s total international trade in goods. Ships are the primary vehicle in maritime trade and, in
contemporary times, ships are routinely used to transport a whole host of goods in containers from
one region of the world to another. Although there are clear gainsto the involved parties from such
voluntary trade between the different regions of the world, researchers have increasingly noted that
the magnitude of these gainsislikely to be less than what most observershave hitherto believed. Why
isthisthe case? AsHeywood (1995), Parker et al. (1999), and Batabyal (2004) have pointed out, this
is becausein addition to transporting goodsin containers between regions, ships have also succeeded
in transporting a variety of dien plant and animal species® from one geographical region to another.

Broadly speaking, shipshavetransported non-native speciesintwo mainways. First, avariety
of marine alien species have been introduced into aregion, often unwittingly, by ships dumping their
ballast water. Cargo shipsroutinely carry ballast water in order to increase vessel stability whenthey
arenot carrying full loads. Whenthese shipscomeinto port, thisballast water must be released before
cargo can beloaded. Thismethod of speciesintroductionsisimportant and very recently the problem
of managing invasive species that have been introduced into a particular region by means of the
dumping of ballast water has received some attention in the literature.”

The second way inwhich alien species have been introduced into a specific regionisby means
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In the rest of this paper, we shall use the terms “alien species,” “invasive species,” and “non-native species’ interchangeably.
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For additional details on this subject, the reader should consult Batabyal and Beladi (2004), Batabyal et al. (2004), and the many
references in these two papers.



of the containers that ships commonly use to transport cargo from one region to another. Indeed,
non-native species can remain undetected in containers for long periods of time. In addition, the
material (such as wood) that is used to pack the cargo in the containers may itself contain alien
species. Inthisconnection, ajoint report fromthe United States Department of Agriculture (USDA),
the Animal and Plant Health Inspection Service (APHIS) and the United States Forest Service
(USFS) has noted that approximately 51.8% of maritime shipments contain solid wood packing
meaterials and that infection rates for solid wood packing materials are non-trivial (USDA, APHIS,
and USFS (2000, p. 25)). For example, inspections of wooden spools from Chinarevealed infection
rates between 22% and 24% and inspections of braces for granite blocksimported into Canadawere
found to contain live insects 32% of the time (USDA, APHIS, and USFS (2000, pp. 27-28)).

The non-native species that we have been discussing generally thus far have frequently
succeeded in invading their new habitats and the resulting biological invasions have turned out to be
very costly for the regionsin which these novel habitats arelocated. For the United States alone, the
dollar value of these costs ismind boggling. To seethis, consider the following two examples. First,
the Office of Technology Assessment (OTA (1993)) has calculated that the Russian wheat aphid
caused $600 million worth of crop damage between 1987 and 1989. Second, Pimentel et al. (2000)
have estimated the total costs of all non-native species at around $137 billion per year.

In addition to the economic costs that we have just noted, invasive species have givenriseto
significant biological damage aswell. Inthisregard, Vitousek et al. (1996) have demonstrated that
non-native species can change ecosystem processes, act as vectors of diseases, and decrease
biological diversity. Further, Cox (1993) has noted that out of 256 vertebrate extinctions with a

known cause, 109 are the result of biological invasions. The implication of the discussion in thisand



the preceding paragraphisclear: Biological invasions have frequently been agreat menaceto society.

Very recently, economists and regional scientists have acknowledged the salience of the
problem of biological invasions. Even so, it is still true that “the economics of the problem
has...attracted little attention” (Perrings et al. (2000, p. 11)). Therefore, our knowledge of the
economic and the management aspects of invasive species is very incomplete. Now, from the
standpoint of a manager, there are various actions that he can take to deal with the problem of
biological invasions. Following Batabyal and Beladi (2004), it ishelpful to separatethese actionsinto
pre-invasion and post-invasion actions. The purpose of pre-invasion actions is to preclude alien
species from invading a new region. Therefore, the reader should think of pre-invasion actions as
fundamentally prophylactic in nature. In contrast, post-invasion actions involve the optimal control
of an alien species, given that this species has already invaded a novel region.

Thefocus of the small extant literature on biological invasions has, for the most part, beenon
the desirability of actions in the post-invasion scenario. Here mention here four examples of such
analyses. First, Barbier (2001) has shown that the economic impact of a biological invasion can be
determined by examining the nature of the interaction between the alien and the native species. He
notesthat the economicimpact dependsonwhether thisinteractioninvolvesinterspecific competition
or dispersion. Second, Eiswerth and Johnson (2002) have studied a dynamic model of alien species
stock management. They show that the optimal level of management effort isresponsiveto ecological
factorsthat are not only speciesand site specific but also random. Third, Olson and Roy (2002) have
used a stochastic framework to explore the conditions under which it is optimal to wipe out an alien
species and conditions under which it is not optimal to do so. Finally, Eiswerth and van Kooten

(2002) have shown that in some circumstances, it is possible to use information provided by experts



to develop amodel inwhichit isoptimal to not eradicate but instead control the spread of aninvasive
Species.

Our searchof thepertinent literaturelocated only three papersthat have theoretically analyzed
the prevention problem; that is, the regulation of a possibly injurious alien species before it has
invaded a particular region. These three papers are Horan et al. (2002), Batabyal and Beladi (2004),
and Batabyal et al. (2004). Horan et al. (2002) compare the properties of management strategies
under full informationand under uncertainty. Batabyal and Beladi (2004) study optimization problems
stemming from the steady state analysis of two multi-person inspection regimes. Finally, Batabyal et
al. (2004) show that if decreasing the economic cost associated with inspections is significant then
it makes more sense for a port manager to choose the inspection regime with fewer inspectors and
lessstringent inspections. In contrast, if reducing the damagefrombiological invasionsismore salient
then this manager ought to pick the inspection regime with more inspectors and more stringent
inspections.

Like Batabyal et al. (2004), we also focus on the inspection aspect of the management
problem. However, unlike their paper, we study here avery different question. Specifically, using the
long run expected net cost (LRENC) of inspections asthe apposite managerial objective, we address
thefollowing important question: Given the cyclical nature of the inspection function, isthe LRENC
of inspections lower when a port manager follows a policy of inspecting cargo upon the arrival of a
specified number of containers (the container policy) or isthis LRENC lower when this manager
inspects cargo at fixed pointsin time (the temporal policy)?We construct a queuing model—that is
different from the model used in Batabyal et al. (2004)—and show that in an inspection cycle,

irrespective of whether the inspection policy choice is made on the basis of an explicit optimization



exercise or on the basis of rules of thumb, the container policy is superior to the tempora policy
because the container policy resultsin lower LRENC from inspection activities.

Thetheoretical framework of thispaper isadapted from Batabyal et al. (2001) and Ross(2003,
pp. 515-519) and the rest of this paper is organized as follows. Section 2 first provides a primer on
gueuing theory and then this section provides a stylized account of biological invasionsin the context
of aqueuing theoretic model of theinspection policy choice problem faced by aport manager. Section
3 analyzesthis choice problem for the case in which the port manager wishesto minimizethe LRENC
from cargo inspections by optimally choosing the number of containers to inspect in an inspection
cycle. Section 4 studies a similar model. However, in this section, the port manager minimizes the
LRENC from cargo inspections by optimally choosing the temporal inspection point in an inspection
cycle. Section 5 compares the optimized value of the port manager’s LRENC from sections 3 and 4
and thereby determines which inspection policy results in lower LRENC. Section 6 concludes and
offers a suggestion for future research on the subject of invasive species management.
2. Queuing Theory and the Choice of I nspection Policy
2.1. Preliminaries

The purpose of queuing theory—see Wolff (1989), Kulkarni (1995), Taylor and Karlin (1998),
and Ross (2003) for textbook accounts—isto mathematically analyze waiting lines or queues. Three
features are common to all queuing models. Specifically, they can be described by a stochastic arrival
process, aprobabilistic servicetimedistribution function, and afixed number of servers. Inthequeuing
model that we employ in this paper, the arrival process is the Poisson process. Therefore, the times
between successivearrivalsareexponentialy distributed and theexponential distributionismemoryless

or Markovian. Hence, the Poisson arrival process is commonly described by the letter M.



In general, the service times are random variables. Therefore, these times can, in principle, be
arbitrarily distributed and thisis assumed in our paper. Therefore, we use the letter G to denote the
general service time distribution function. Finaly, the deterministic number of servers is typically
denoted by some positiveinteger. Inthis paper, servers are inspectors. Moreover, our analysiswill be
conducted from the perspective of a port manager who employs a so called representative inspector
(hereafter inspector). As such, we shall work with a single inspector. In the language of queuing
theory, our model corresponds to the well known M/G/1 queuing model.

2.2. A stylized account of biological invasions

Consider astylized, publically owned port in aparticular coastal region of some country. Upon
arrival at this port, ships unload their containers carrying cargo. The arrival of these containers
coincideswiththearrival of awholehost of conceivably deleterioushbiological organisms. Now, before
thisincoming cargo can be moved to various pointsin theinterior of the country under consideration,
the containers must first be inspected at the inspection facility in our port. The purpose of this
protective activity is to ensure that one or more biological invasions—with potentially adverse
consequences for the economy and the ecology of the country under study—do not infact take place.
We supposethat the arrival rate of the various biological organismsis proportional to the arrival rate
of the containers at the inspection facility. Therefore, we shall not model the biological organisms
directly. Instead, we shall focus on the containersthat bring these organismsto our port. Further, the
arrival process of the containersat the inspection facility in our port representsthe arrival process for
the queuing model that we analyze in this paper. Finally, we assume that the containers in question
arrive at the inspection facility in accordance with a Poisson process with rate a.

The manager of our port is interested in precluding invasions by the possibly injurious



biological organisms. As such, in this paper, his basic choice problem is to determine which of two
possible inspection policies he ought to have in place. Now, from the standpoint of invasive species
management, note the following key features of inspections. First, inspections are physically costly to
undertake. Second, quite apart from the cost of conducting physical inspections, inspections also
impose an economic cost on society. This cost arises from the fact that while containers are being
inspected, there is no unloading or loading of cargo and hence economic activity in our port is very
dow if not at astandstill. Third, properly conducted inspections reduce (and perhaps even eliminate)
thelikelihood of abiological invasion. Inthefollowing sections 3 and 4, we shall explicitly model these
three features of inspections.

The reader will note that inspections generally require varying amounts of time. For example,
if the inspector knows that a batch of containers awaiting inspection are all from a particular country
fromwhich either zero or few invaders have emerged in the past then he may be ableto clear thisbatch
of containersrelatively quickly. Onthe other hand, if the containersawaiting inspection are either from
severa nations or from anation with aknown history of invasive species problemsthen moretimewill
generally be needed to clear the containers in question. The upshot of this discussion is that the
inspection times are random variables. Given this state of affairs, let | denote the inspection time
random variable and let E[l] denote its expectation. The reader will recall that | has a general
cumulative distribution function. Let us denote this function by G(-). The key pieces of our queuing
theoretic model are now in place. Therefore, we now systematically analyze the container policy first
in section 3 and then the temporal policy in section 4.

3. The Container Policy

Containers arrive at the inspection facility in accordance with a Poisson process with rate a.



The port manager’ sinspector examines the containers that have arrived at the inspection facility and
he continues to do so until al the containers that are present have been inspected. When this busy
period ends, the inspector leaves the inspection facility and he returns only when N new containers
have arrived and are awaiting inspection. As a result of these inspections, the inspector—and
ultimately the port manager—incurs costs and obtains benefits from two sources. The first source of
net cost (total cost less total benefit) arises from things like the expense of paying the inspector and
operating the inspection equipment (a cost) and from the reduction in the likelihood of a biological
invasion (a benefit). We model thisfirst source of net cost by supposing that our inspector incurs net
cost at the rate of c¢ dollars per container per unit time. The second source of net cost stems from
things like the deleterious impact on society from the sowdown in economic activity while the
containers are being inspected (acost) and from the determination of whether the containers actually
contain what they are supposed to contain (a benefit). We account for this second source of net cost
by supposing that the inspector incurs a net cost of C dollars each time he returns to the inspection
facility.

Thereader should note that the inspection functioniscyclical in nature. In other words, when
containers have arrived at thefacility inour port, theinspector isbusy inspecting these containersuntil
there are no more containers waiting to be inspected. This is the busy period. Then comes an idle
period in which the inspector has no specific duties to perform. Then, when N additional containers
arrive at the facility to be inspected, a new busy period commences. This busy period is followed by
an idle period and so on and so forth. Given this state of affairs, if we say that a cycle is completed

whenever the inspector returnsto the inspection facility, then the delineation of eventsin the previous



paragraph constitutes arenewal-reward process.® Therefore, we can use the renewal-reward theorem
to computeour port manager’s LRENC frominspectionactivities.” Let E[net cost per cycle] denote
the expected net cost of inspections per cycle. Similarly, let E[length of cycle] denote the expected
length of an inspection cycle. Then, the renewal-reward theoremtellsusthat the inspector’s LRENC

is given by a specific ratio and that ratio is

E[net cost per cycle] (1)
E[length of cycle]

LRENC=

Given this setup, our port manager’s problemis to choose N optimally to minimize the LRENC of
inspections.

Let us now calculate the two expectations on the right hand side (RHS) of equation (1).
Consider atimeinterval of length L; which beginsat thefirst time during an inspection cyclein which
there are | containers in the facility and ends at the first time thereafter that there are only j-1
containers. Then Z} j‘Lj is the total amount of time that the inspector is busy checking containers
during an inspection cycle. To this time we now add the average time for which our inspector isidle

until N new containers arrive at the inspection facility. Doing this gives us

N
—

E[length of cycle]:j§ E[Lj]+ ()]
i-1
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See Ross (1996, pp. 132-140) and Ross (2003, pp. 416-425) for more on renewal -reward processes in general and the renewal-
reward theorem in particular.
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We shall soon describe the port manager’s optimization problem as a long run expected net cost minimization problem. This
notwithstanding, the reader should note that without any substantive changes, we could also have delineated this manager’s
optimization problem as along run expected net benefit maximization problem.
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Now consider the moment in time when an inspection is about to begin and there are j-1
containers waiting to be inspected. We assume that the inspection times do not depend on the order
inwhichthe containers areinspected. As such, suppose that the order of inspectionislast in, first out
or LIFO. Then, as noted in Ross (2003, pp. 322-324), this means that the amount of timeit takesto
go from j containerswaiting in the facility to be inspected to j-1 containerswaiting to be inspected
hasthe same distribution asthe length of the busy period B of the M/G/1 queuing model. Now, from

equation 8.31 in Ross (2002, p. 253), it follows that

E[1]

ElL)-ElBl—— e

(3)

where 1, the reader will recall, is the inspection time random variable. For equation (3)—and indeed
many of the subsequent equations in this paper—to make sense, we must have aE[1]<1. Therefore,
in the rest of this paper we assume that this inequality holds. Now, using equation (3) to simplify

equation (2), we get

S = N

E[length of cycle]zj_:l T-oE[l] EZia(l—aE[l])'

(4)

This completes the task of calculating the expected length of an inspection cycle. We now compute
the numerator on the RHS of equation 1 or the expected net cost per inspection cycle incurred by our
port manager’ s inspector.

To compute E[net cost per cycle], let éj be the net cost incurred by the inspector during a

time period of length L;, where L, is as described in the paragraph immediately preceding equation
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(2). Thenit follows that the total net cost incurred during the busy period of an inspection cycle is
Z} j‘éj +C. To this, we now have to add the net cost incurred during the idle period of the inspection
cycle. Note that because the containers arrive at the inspection facility in accordance with a Poisson
processwith rate o, therewill be j containersin the facility for an exponential amount of time with
rate o and theindex j runsfrom 1 to N-1.2 Therefore, the total expected net cost during the idle
period is ¢(1+2+3+...+N-1)/a=cN(N-1)/2a. With this computation in place, the total expected net
cost in an inspection cycle or E[net cost per cycle] is

N
E[net cost per cycle]=)_ E[C]+C+ (5)

j=1

cN(N-1)
20

Our next task isto find an expressionfor E[éj]. Todothis, recall thetimeinterval of length L;.
During thistime interval, let S be the sum of the initial inspection time and the sum of all the times
spent in the inspection facility by the containersthat have arrived and have been inspected until the L,
timeinterval endsand thereare only j-1 containersin the inspection facility. Mathematically, we can
write thisas Cjz(j —1)cLJ.+cSJ. To proceed further, it isimportant to recognize that S is distributed
as the sum of the times spent in the inspection facility by all the arriving containers during the busy
period of the M/G/1 queuing model. Let usdenotethissumrandomvariable and itsexpectation by B

and by E[B] respectively. Then, using equation (3) and the expression for éj above, we get

El]

E[C]=(-1)cE[L] +CcE[S]=( -1
[Cl=G-1)cE[L] +cE[S]=( - ) Emn =0

+CE[B]. (6)

8
This result follows from proposition 2.2.1 in Ross (1996, p. 64) and proposition 7.2.1 in Ross (2002, p. 203).
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From Ross (2003, p. 518), we conclude that E[BJ]=aE[l ]/{ 2(1-aE[1])%} +E[1]/(1-aE[I]).
Using thislast expressionfor E[B] and equation (6), we can simplify equation (5). Thissimplification

gives

aE[1] , E[] .o, ON(N-D)
2(1-0E[1])? 1-«E[l]" ~ 2a(1-aE[l])

E[net cost per cycle]=cN[ @)

Now dividing the RHS of equation (7) by the RHS of equation (4), we get our required expression

for the LRENC of inspections. That expression is

o’cE[1%]  ¢(N-1) oC(1-aE[l])
2(1-aE[l]) 2 N '

LRENC=0cE[1] + (8)
Having computed the expression for the LRENC of inspections, we are now in a position to
state our port manager’s optimization problem. Specifically, this manager chooses the number of

containers N to minimize the LRENC from inspection activities. Formally, our port manager solves

o’cE[1 7] . c(N-1) . aC(l—aE[I])].

2(1-0E[l]) 2 N ®)

min{ N} [acE[I] +

Treating N as a continuous control variable and using calculus, we see that the optima number of

containers N * that minimizes the port manager’s LRENC is given by®

9
The reader can check to see that the relevant second order condition is satisfied.
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N \' 20C(1-oE1]) 10
C

In words, equation (10) tells us that the optimal number of containers N* equals the square root of
the ratio of the product of twice the Poisson arrival rate of containers(co), the second source of net
cost (C), andtheterm (1-aEJ[1]) tothefirst source of net cost (c). Inspecting equation (10) it iseasy
to verify two properties of the optimal number of containers N . First, as the second source of net
cost (C) increases, it isintheinterest of the port manager to raise the optimal number of containers
inthe inspection cycle. Second, if the first source of net cost (c) goes up, then the port manager finds
it desirable to lower the optimal number of containersin the inspection cycle.

Let usnow substitute the expression for the optimal number of containers from equation (10)
into the minimand in equation (9). This gives us an expression for the minimal LRENC that our port
manager will incur by selecting the number of containers in the inspection cycle optimally. Let this
minimal LRENC be (LRENC),, Wherethe subscript CP denotesthe container policy. Somealgebra

tells us that

o’cE[1 7]

(LRENC)cp=ocB[l] +— = Eripy

+/2acC(1-oE[]) —g. (11)

Inspecting equations (8) and (11), we see that thefirst two terms on the RHSs of these two equations
are independent of the optimal number of containers N and hence these two terms are identical.
However, N* affectsthe last two terms on the RHS of equation (8). Hence, when we substitute the
optimized valueof N, N *, into equation (8), we get the last two terms on the RHS of equation (11).

Theselast two termsonthe RHS of equation (11) depend onthe Poissonarrival rateof thecontainers (o),

14



the first source of net cost (c), the second source of net cost (C), and the expectation of the
inspection time random variable 1.

We now analyze the case in which the focus of our port manager is not on the optimal number
of containersin an inspection cycle but on the temporal frequency of inspections. After computing the
optimal temporal frequency of inspections, we shall compare equation (11) with the corresponding
equation for this latter case in which the port manager’s focus is on the temporal dimension of the
inspection function.

4. The Temporal Policy

Instead of selecting the number of containers optimally, our port manager now pursues an
alternate strategy. In particular, whenever there are no containers in the inspection facility, the
inspector leaves this facility and he returns only after afixed time period T has gone by. The specific
task at hand now isto choose T optimally to minimize the LRENC from inspection activities.

Let usnow calculate the port manager’s LRENC when hisfocus is on the control variable T
and not on the optimal number of containers. Asin the previous section, we suppose that containers
arriveat theinspectionfacility inthe port under study in accordance with aPoissonprocesswithrate a.
Further, also as in section 3, we shall use the theory of renewal-reward processes in general and the
renewal-reward theorem in particular to compute the LRENC from inspections.

To thisend, let us say that a new cycle begins every time the inspector |eaves the inspection
facility.’ Also, from the discussion in the previous section, recall that every cycle has a period during

which the inspector is busy and a period during which the inspector isidle. Given these two points,

10

The reader should note the difference in the meanings of the word “cycle” in this section and the previous section 3. In section 3,
anew cycle began every time the inspector returned to the inspection facility. In contrast, in this section, anew cycle begins every
time the inspector |eaves the inspection facility.
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we now follow Batabyal et al. (2001) and condition on N(T), the number of container arrivalsin the
time period in which the inspector is away from the inspection facility, to compute the two
expectations of interest, i.e., E[net cost per cycle] and E[length of cycle]. Conditioning on N(T),
we get
iND
E[net cost per cycle/N(T)]= Y E[Cj]+C+£2T)T. (12)
j=1
We shall now use the following four pieces of information to simplify equation (12) further.
First, from equation (6) we get an expression for E[éj]. Second, from theorem 2.3.1 in Ross (1996,
p. 67) we can tell that the times at which the containers arrive at the inspection facility are
independently and uniformly distributed random variables on the interval (0,T). Third, from Ross
(1996, pp. 59-60) we conclude that N(T) is distributed as a Poisson random variable with mean «oT.
Finally, fromRoss (2003, p. 519) wereasonthat E[N(T){ N(T)-1}]=E[N2(T)] -E[N(T)] =(T)?. Using
these four pieces of information to simplify equation (12), we get
cE[I] acT?

2
E[net cost per cycle]=L +aCTE[B] +C+

2(1-aE[I]) (13)

Our next task isto determine E[length of cycle]. Once again, conditioning on N(T) and then
using the properties of the expectation operator (see Ross (1996, p. 21)) we get
E[length of cycle]=E[E[length of cycle/N(T)]]=E[T+N(T)E[B]]. (14)
We now focus on the expectation on the extreme RHS of equation (14). Specifically, let us smplify

this expectation using equation (3) and the fact that E[N(T)]=aT. This gives us
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oE[T _ T

E[length of cycle]=T .
Lleng yclel +1—0cE[I] 1-aE[l]

(15)

We now divide the RHS of equation (13) by the RHS of equation (15) and then use the result

E[BJ =aE[l 4 2(1-0E[I])3 +E[1]/(1-aE[I]) to eliminate E[B]. After some algebra, we get

o’cE[1% _ acT  C(1-oE[l]) .

LRENC=acE[l] + SioEl] 2 =

(16)

Having computed the expression for the LRENC of inspections, we are now in a position to
state our port manager’s optimization problem. Specifically, this manager chooses the time during
which the inspector is absent from the inspection facility T to minimize the LRENC from inspection

activities. Formally, our port manager solves

o’cE[1%  acT C(l—aE[I])].

O =T T

(17)

Using calculus, the optimal time T * during which the inspector ought to be absent fromtheinspection

facility is given by™

7| 200-aEll) 18
acC

Inwords, T * equasthesquareroot of theratio of theproduct of twicethe second sourceof net cost (C)

1
The reader can check to see that the pertinent second order condition is satisfied.

17



and the term (1-oE[I]) to the product of the Poisson arrival rate of the containers (o) and the first
source of net cost (c). Inspecting equation (18) it is straightforward to verify two properties of the
optimal leave period T *. First, as the second source of net cost (C) goes up, the port manager’s
optimal response calls for lengthening the time period during which the inspector is away from the
inspection facility. In contrast, when the first source of net cost (c) increases, it isoptimal to shorten
the time during which the inspector is absent from the inspection facility.

Let usnow substitute the expressionfor T * from equation (18) into the minimand in equation
(17). Thisgivesusan expression for the optimized LRENC frominspectionsgiventhat theinspector’s
leave period has been selected optimally. Denote this optimized LRENC by (LRENC),p, where TP

denotes the temporal policy. After several steps, we get

o’cE[1 7]

(LRENC)-=acE[1] + 2(0-oE[l])

+/20cC(1-aE[1]). (19)
I nspecting equations (16) and (19), we seethat thefirst two termsonthe RHSs of thesetwo equations
are independent of the optimal leave period T * and hencethesetwo termsareidentical. Evenso, T~
impacts the last two terms on the RHS of equation (16). Hence, when we substitute the optimized
valueof T, T, into equation (16), we get the last term on the RHS of equation (19). Thislast term
on the RHS of equation (19) is a function of the Poisson arrival rate of the containers (o), the first
source of net cost (c), the second source of net cost (C), and the expectation of the inspection time
random variable 1.

Recall that the objectiveof our paper isto provideananswer to thefollowing question: Isthe LRENC

of inspections lower with the container policy or the temporal policy? We now provide a precise

18



answer to this question.
5. The Optimal Inspection Policy in Invasive Species M anagement

Equations (11) and (19) provide us with expressions for the optimized LRENC when the
number of containers and the leave period have been chosen optimally. Comparing these two

expressions, we see that

o%cE[1 2]
2(1-aE[1])

(LRENC)Zp=acE1] + +/2acC(1-aE[1]) —§<

o’cE[1 7]

=T

+/20cC(1-0E[1]) =(LRENC) . (20)

Equation (20) clearly tellsusthat the port manager’ s LRENC withanoptimally chosen number
of containersin the inspection cycle islower than his LRENC with an optimally chosen leave period
in the inspection cycle. It isin this sense that the container policy is superior to the temporal policy.
Put differently, if the port manager had to chooseasingle control variable fromacontrol set consisting
of the number of containers and the leave period, then this manager would choose the number of
containers over the leave period.

The reader will note that the result described in the previous paragraph is based on explicit
optimization by the port manager. Therefore, it isof someinterest to determinewhether the superiority
of the container policy result holds when, instead of optimizing, our port manager chooses the leave
period for the inspector on the basis of arule of thumb. In this inspection context, what might arule
of thumb temporal policy look like? To answer this question, et us reconsider the expressionsfor the

two LRENCs in equations (8) and (16).
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Inspecting the RHSs of these two equations, we see that the first two termsin both equations
are identical. So no rule of thumb emerges by “eyeballing” these two terms. However, if our port
manager were to equate the two third terms in these two equations, i.e., set ¢(N-1)/2=acT/2, then
he would select T,=(N-1)/a and this is our first rule of thumb. Obviously, this is not the only
possibility. If the manager equated the two fourth terms on the RHSs of equations (8) and (16), i.e.,
set aC(1-aE[1])/N=C(1-aE[I])/T, then he would choose T,=N/a and this is our second rule of
thumb. By substituting thesevalues of T, and T, into equation (16) and then comparing the emerging
two equations with equation (8), the reader can verify that our previous result
(LRENC)-<(LRENC)+ holdsfor both the above mentioned rules of thumb. From thiswe conclude
that our basic result about the superiority of the container policy isrobust. It holds not only whenthe
port manager chooses the inspection policy on the basis of an explicit optimization exercise but also
when this manager chooses the inspector’ s leave period with rules of thumb.

6. Conclusions

Maritimetradetoday routinely involvesthe transport of goods by means of containerson ships
fromoneregion of theworld to another. Thistransport of goods by meansof containerson shipsoften
results in detrimental invasions of new regions by alien plant and animal species. Therefore, if an
apposite authority such as a port manager’s aimisto prevent biological invasions, then this manager
must inspect arriving containers for potentially deleterious biological organisms. Given this state of
affairs, what kind of ingpection policy ought amanager to optimally havein place?Inparticular, isthe LRENC
of inspections lower when a port manager follows a policy of inspecting cargo upon the arrival of a
specified number of containers (the container policy) or is this LRENC lower when this manager

inspects cargo at fixed pointsin time (the temporal policy)? Our analysis shows that irrespective of
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whether theinspection policy choiceismade on the basis of an explicit optimization exercise or onthe
basis of rules of thumb, the container policy is superior to the temporal policy because the container
policy resultsin lower LRENC from inspection activities.

The analysis in this paper can be extended in a number of directions. We now make one
substantive suggestion for extending the research described in this paper. Given the work of Roberts
and Spence (1976), environmental economists and regional scientists now know that a pure price
control instrument (fee or tax) and a pure quantity control (emissions permit scheme) instrument can
be combined to create a hybrid control instrument that is part-price and part-quantity in nature.
Roberts and Spence (1976) showed that this hybrid control instrument can always be converted into
apure price or apure quantity control instrument. Therefore, in comparison with either apure price
or a pure quantity control instrument, a regulator will typically do at least aswell and possibly much
better with this hybrid control instrument.

Building on this basic Roberts and Spence (1976) insight, it would be useful to ascertain
whether it is possibly to design ahybrid inspection policy that is part-container and part-temporal in
nature. If this can be done, then the next step would be to determine whether this part-container and
part-temporal hybrid inspection policy dominates the pure container and the pure temporal inspection
policiesintermsof, for instance, the LRENC criterion. Studies of invasive species management that
incorporatethisaspect of theinspection policy choice questioninto theanalysiswill provide additional

insights into a management problem that has considerable economic and biological consequences.
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