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Abstract 

One of the key features of our modern world is its gradual transition to a network 

society. Many networks like the Internet have been found to possess scale-free and 

small-world network properties exhibited by power law distributions.  

Scale-free properties evolve in large complex networks through self-organizing 

processes and more specifically, preferential attachment. New nodes tend to attach 

themselves to other vertices that are already well-connected. Because traffic is routed 

mainly through a few highly connected vertices, the diameter of the network is small in 

comparison to other network structures, and movement through the network is therefore 

efficient. At the same time, this efficiency puts scale-free networks at risk for becoming 

disconnected or significantly disrupted, when super-connected nodes are removed either 

intentionally or through a targeted attack.  

This paper will examine and compare three communication networks: bandwidth 

capacity between major metropolitan areas within the United States (97-01), inter-

district phone traffic in Italy (1989-1993) and a particular peer-to-peer data exchange 

network. Each network will be examined in terms of its network topology and 

specifically whether or not they are evolving into scale-free networks. 

Finally, the paper will conclude with some preliminary thoughts and reflections 

aiming at a consolidation and exploration of further comparative studies on 

communication networks in Europe and North America, in the light of the STELLA 

objectives. 
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1  Introduction 

 

One of the key features of our modern world is its gradual transition to a network 

society. This development has prompted many intriguing research questions, not only 

on the structural properties of networks (e.g., connectivity properties), but also on its 

evolutionary properties. The present paper will address the latter type of questions. 

Many networks like the Internet have been found to be small-world networks 

possessing so-called scale-free properties exhibited by power law distributions 

reflecting their non-linear dynamic features. Scale-free properties evolve in large 

complex networks through self-organizing processes and more specifically, preferential 

attachment. New nodes tend to attach themselves to other vertices that are already well-

connected. Systems with this topology are generally viewed as falling into a larger class 

of networks that exhibit a small-world phenomenon. A small-world network is 

characterized by a high degree of local clustering and a short average minimum path or 

diameter through the network. Because traffic is routed mainly through a few highly 

connected vertices, the diameter of the network is small in comparison to other network 

structures, and movement through the network is therefore efficient. In this context, 

Watts and Strogatz (1998), two pioneers of “small-world” network analysis, argue that 

“models of dynamical systems with small-world coupling [for example] display 

enhanced signal propagation speed, computational power, and synchronizability.” 

While an efficient network topology is good in certain respects, it also presents some 

problems emerging from its high connectivity. Bad elements such as contagious 

diseases, forest fires and Internet viruses tend to spread more freely in “small-world 

networks.” Also, a network with “small-world” properties is more vulnerable to major 

disruption or a shutdown, when super-connected nodes are removed either intentionally 

or through a targeted attack. 

This paper examines small-world phenomena in communications systems focusing 

specifically on three networks each operating in different geographical spheres. The first 

one is the logical IP (Internet Protocol) fiber optic infrastructure that connects major 

metropolitan areas in the United States (for the years 1997 through 2000), the second 

one a portion of the Italian telephone network using outgoing landline calls by district to 

capture network traffic dynamics, while the third one is a peer-to-peer data network for 

the international exchange of music for a particular group of independent people. Power 

law distributions are generated for each network to look for scale-free properties. The 
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implications of the results of these experiments for transportation policy and planning, 

and the way in which they may vary depending on the geography at hand – for example, 

whether or not a network operates in Europe versus the United States, or whether it is 

one with no geographical boundaries and rather has an international dimension – are 

extensively discussed. The paper offers also some thoughts about the analytical 

methodologies, visualization techniques and data that are needed to facilitate a valid and 

informative cross-Atlantic comparison of communication networks in this context. 

The paper contains three sections in addition to the present introduction. In Section 

2, the small-world network concept as it has evolved over the past few decades and the 

way in which it has been applied to various systems in a variety of fields such as 

transportation and communications is described. Section 3 presents the results of the 

empirical experiments involving the US backbone network, telephone traffic in Italy 

and the peer-to-peer musical data exchange system. Finally, Section 4 presents the 

implications of the results and directions for cross-Atlantic research in this area. 

 

2  Small-world Network Analysis 
 

2.1  Prefatory remarks 

 

The concept of “small-world” networks has recently received much attention, although 

its origins stem from early work done some forty years ago on large, complex systems. 

Erdös and Renyi (ER) (1960) were pioneers in this area applying “probabilistic 

methods” to solve problems in graph theory, where a large number of nodes were 

involved (Albert and Barabasi 2002, p. 54). Under this assumption, they modeled large 

graphs utilizing algorithms where N nodes were randomly connected according to 

probability p, and found that when vertices were connected in this fashion they followed 

a Poisson distribution (Albert and Barabasi 2002, p. 49). A more thorough review of 

random graphs can be found in the survey work of Bollobás (1985). Following ER’s 

findings, their random models of network formation were widely used in several 

disciplines examining networks, the most topical to this research being Internet 

topology generators (Radoslavov et al., 2000).  

The absence of detailed topological data for complex networks left random network 

models as the most widely used method of network simulation (Barabasi 2001). As 

computing power increased and real world network data began to become available, 
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several empirical findings emerged. Three network characteristics frequently resulted 

from the analysis of complex networks (Albert and Barabasi 2002, p. 48-49): 

1. Short average path length 

2. High level of clustering 

3. Power law and exponential degree distributions. 

Short average path length indicates that the distance between any two nodes on the 

network is short; they can be reached in a few number of hops along edges. Clustering 

occurs when nodes locate topologically close to each other in cliques that are well 

connected to each other. Lastly, the frequency distributions of node density, called 

degrees, often follow power laws. 

Watts and Strogatz (WS) (1998) formalized this concept of clustering for large, 

complex networks, although others had introduced several years before some of the 

features of “small-world” phenomena using smaller graphs (e.g., see Zipf, 1949). Using 

several large data sets, WS found that the real-world networks studied were not entirely 

random, but instead displayed significant clustering at the local level. According to WS, 

“small-world” networks are characterized by their average path length L(p) and the 

degree to which there is local connectivity in the network, measured by a clustering 

coefficient C(p). The variable L(p) measures the average minimum path in the network 

and C(p) the connectivity of an average neighborhood in the network. More specifically, 

L(p) is the smallest number of links it takes to connect one node to another, averaged 

over the entire network, and clustering is the fraction of adjacent nodes connected to 

one another. One may view L(p) as a global property of the network and C(p) a local 

property. 

WS (1998) showed that a “small-world” network falls somewhere in between a 

regular lattice and a random network. To demonstrate this, they began with a regular 

lattice with n vertices and k edges, and rewired it in such a way that it approached a 

random network. Specifically, beginning with a vertex, the edge connected to its nearest 

neighbor was reconnected with probability p to another vertex chosen randomly from 

the rest of the lattice. No rewiring occurred, if there already exists a connection to that 

vertex. They continued the process by moving clockwise around the lattice, and 

randomly rewiring each edge with probability p, until the lap was completed. Next, the 

same process was repeated for vertices and their second nearest neighbors. Because they 

considered a network with only first-order and second-order connections in each 

direction of the vertex, they terminated the rewiring process after two laps.  
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In general, for a network with k nearest neighbors, WS found that rewiring would 

stop after k/2 laps. As the network is rewired, shortcuts through the network are created, 

resulting in an immediate drop in L(p). Local clustering, or C(p), remains relatively high 

up to a point after which it begins to drop rapidly. The results of this process suggest 

that the global connectivity of a regular network can significantly improve with the 

addition of just a few shortcuts; in essence, a “small world” network is one with high 

degree of local clustering and a short average minimum path. 

The short cuts across the graph to different clusters of vertices introduced a level of 

efficiency1 not predicted in the ER model. The distribution was not Poisson as with the 

ER model, but was bounded and decayed exponentially for large sets of vertices (Watts 

and Strogatz, 1999). Watts (2003) has extended this work recently to cover topics 

ranging from: “epidemics of disease to outbreaks of market madness, from people 

searching for information to firms surviving crisis and change, from the structure of 

personal relationships to the technological and social choices of entire societies (p.1).” 

The work by WS was not the first though, to investigate the effects of rewiring, as is 

witnessed by the following quotation (Hayes, 2000, p. 106): “…Fan R. K. Chung, in 

collaborations with Michael R. Garey of AT&T Laboratories and Béla Bolobás of the 

University of Memphis, studied various ways of adding edges to cyclic graphs. They 

found cases where the diameter is proportional to log n.” 

The finding of WS spurred a flurry of work into understanding the attributes of 

complex networks, while new findings and discoveries quickly followed. Two parallel 

studies by Albert, Jeong and Barabasi (1999) of Notre Dame and Adamic and 

Huberman (1999) at Xerox Parc found that when one looks at the World Wide Web as a 

graph (web pages are vertices and hyperlinks connecting them are edges), it follows not 

a Poisson or exponential distribution, but a power law distribution. 

 

2.2  Methodological approach: power law distributions 

 

In a power law distribution there is an abundance of nodes with only a few links, and a 

small but significant minority that have a very large number of links (Barabasi, 2002). It 

should be noted that this is distinctly different from both the ER and WS model; the 

probability of finding a highly connected vertex in the ER and WS model decreases 

exponentially, so that “vertices with high connectivity are practically absent”2 (Barabasi 

and Albert 1999, p.510). The reason, according to Barabasi and Albert (1999), was that 
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their model added another perspective to complex networks, incorporating network 

growth; the number of nodes does not stay constant as in the WS and ER model. The 

Barabasi-Albert (BA) models added growth over time and the idea that new vertices 

attach preferentially to already well-connected vertices in the network. 

Barabasi and Albert (1999) formalized this idea in “Emergence of Scaling in 

Random Networks”. They stated that in a complex network like the World Wide Web 

the probability P(k) that a vertex in the network interacts with k other vertices decays as 

a power law following P(k) ~ k−γ where the power law exponent is equal to three (see 

Figure 1 for a graphic representation of the function). When studying real world scale-

free networks, empirical results have ranged from 2.1 to 4 (Barabasi and Albert, 1999). 

While the model set up by Barabasi and Albert produces an exponent of three, they 

demonstrate how the model can be altered to produce results other than three for 

different network conditions. The BA model is based on three mechanisms that drive 

the evolution of graph structures over time to produce power law relationships (Chen et 

al., 2001, p. 5): 

 

• Incremental growth – Incremental growth follows from the observation that 

most networks develop over time by adding new nodes and new links to an 

existing graph structure. 

• Preferential connectivity – Preferential connectivity expresses the frequently 

encountered phenomenon that there is a higher probability for a new or existing 

node to connect or reconnect to a node that already has a large number of links 

(i.e. high vertex degree) than there is to (re)connect to a low degree vertex. 

• Re-wiring – Re-wiring allows for some additional flexibility in the formation of 

networks by removing links connected to certain nodes and replacing them with 

new links in a way that effectively amounts to a local type of re-shuffling 

connection based on preferential attachment. 

 

The difference between the random model of Erdös and Renyi and the model described 

by Barabasi and Albert becomes clearer when seen in a visual representation. In their 

node diagram, Barabasi (2001, p. 1) show that more than 60% of nodes (green) can be 

reached from the five most connected nodes (red) compared with only 27% in the 
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random network. This demonstrates the key role that hubs play in the scale-free 

network. Both networks contain the 130 nodes and 430 links. 

This leaves the rather fuzzy question of what is a small world and what is a scale-

free network. As stated earlier, Albert and Barabasi (2002) see small worlds and scale-

free networks as explanations for two different phenomena occurring in complex 

networks. The WS small world model explains clustering and the scale-free model 

explains power law degree distributions (Albert and Barabasi 2002, p.49). There have 

though, been other opinions on how small world and scale-free networks should be 

classified; Amaral et al. (2000) argue that scale-free networks are a sub- class of small 

world networks. Further, they argue that there are three classes of small world networks 

(Amaral et al., 2000, p.11149): 

 

a) Scale-free networks, characterized by a vertex connectivity distribution that 

decays as a power law;  

b) Broad-scale networks, characterized by a connectivity distribution that has a 

power law regime followed by a sharp cutoff; 

c) Single-scale networks, characterized by a connectivity distribution with a fast 

decaying tail. 

 

An exact delineation of where small world and scale-free networks diverge is still 

somewhat fuzzy in the literature, but the area of study is still evolving. It can be safely 

said that the two are inter-related and that generally speaking scale-free networks 

exhibit the clustering and short average path length of small world networks, but not all 

small world networks exhibit the power law distribution of scale-free networks. 

 

2.3  Small-world network applications 

 

“Small-world” network phenomena have been explored in the context of many large, 

complex networks. Not only has the World Wide Web found to fall into a scale-free 

organization, but so has the Internet. The Faloutsos brothers (1999) found that the 

Internet followed power laws at both the router level and autonomous system (AS) 

level. The router level entails the fiber optic lines (edges) and the routers (vertices) that 

direct traffic on the Internet, and the AS level entail networks (AT&T, UUNet, C&W 

etc.) as vertices and their interconnection as edges. This means that the physical fabric 
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of the Internet and the business interconnections of the networks that comprise the 

Internet both qualify as scale-free networks. Before these discoveries, the Internet had 

been modeled as a distinct hierarchy or random network, and the new finding had many 

implications throughout the field of computer science.  

Scale-free theory and BA model have not been without debate. Several arguments 

have been made stating that the BA model is too simplistic for the Internet and 

additional corollaries need to be made (Chen et al., 2001). The re-wiring principle was 

one of Albert and Barabasi’s (2000) responses to these criticisms, but overall the model 

has held. Tests of network generators based on power laws have been found to produce 

better models, and many efforts are being made to base new Internet protocols on these 

discoveries (Tangmunarunkit et al., 2001, Radoslavov et al., 2001). While these 

discoveries have paved the way for advances in several fields, the question of the 

geography and location of these networks remains to be addressed. 

Small-world properties have also been found in transportation networks. Amaral et 

al. (2000) found that the airline network was a small world because of its small average 

path length, and other transportation networks such as the Boston subway has also been 

found to be small worlds (Latora and Marchiori 2001). Schintler and Kulkarni (2001) 

discovered the emergence of “small-world” phenomena in a congested road network. 

One may argue though, that transportation networks are less prone to evolve into a 

scale-free structure over time given the fact that they tend to be planar. The number of 

edges that can be connected to a single node is limited by the physical space available to 

connect them and it is this fact that makes the large number of connections needed for a 

power law distribution quite difficult to obtain. But even in some non-planar networks 

this may be a problem as well. Airline networks, for example, have similar properties. 

The number of connections is limited by the space available at the airport, and “such 

constraints may be the controlling factor for the emergence of scale-free networks” 

(Amaral et al., 2000, p. 11149). 

Finally, there is an interesting parallel between the study of scale-free networks 

from a mathematical-statistical perspective and network externalities from an industrial 

organization perspective. Network externalities refer to unpaid benefits for users or 

subscribers of a network facility as a result of additional entry of new members. Given 

the direct and indirect connectivity increase of one additional member, a non-linear 

evolutionary growth is obtained. This drives the network to a more than proportional 
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performance and explains the rapid introduction rate of new forms of network 

technologies (e.g., mobile phone). 

More applications and experiments aiming to verify the power law behavior or 

scale-free assumptions can be found in different fields, ranging from biology, e.g., with 

the study of the metabolic network of the E. Coli bacterium (Jeong, 2003), to networks 

in linguistics (Albert and Barabasi, 2002). Annex A presents a brief review of these 

applications. 

 

3  Empirical Experiments 

 

3.1  Introduction 

 

In this section, we look more closely at three communications networks and use the 

power law distribution methodology to assess whether or not they possess scale-free 

properties. The networks examined include the US IP (Internet protocol) fiber optic 

infrastructure, the landline telephone network in Italy and a peer-to-peer musical data 

exchange network. The results are mixed, most likely owing perhaps to the diversity of 

the networks examined and differences in the social, economic and political factors 

underpinning these networks.  

 

3.2  Bandwidth network in the United States 

 

The US IP (Internet protocol) infrastructure is an interesting case to study features of 

small-world networks. The logical network itself is planar, while the underlying 

physical infrastructure – i.e., the fiber that is positioned in the ground, is planar, 

meaning there is a spatial aspect attached to it that may hinder the development of scale-

free attributes in the network. This study will examine whether the vertex connectivity 

of these networks exhibits a power law distribution over time and whether other scale-

free properties such as preferential attachment and rewiring have also taken place.  

Data on the US IP fiber optic infrastructure data was collected for the years 1997-

2000. While 1997 and 1999 data was obtained from New York University’s Information 

Technology and the Future of Environment project (SBR-9817778) (Moss and 

Townsend, 2000), the 1998 data was compiled from CAIDA’s MapNet application, and 

the 2000 data was obtained from the University of Florida’s The Infrastructure of the 
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Internet: Telecommunications Facilities and Uneven Access project (BCS-9911222) 

(Malecki, 2002). All four data sets cover the backbone layer-three transit providers of 

the USA Internet and are very similar in composition. It should be noted that data in all 

three data sources is not always 100% accurate, since carriers often advertise more 

bandwidth and lines than are actually in service and topological errors have been found 

in the past. These have been corrected for to the maximum extent. However, for the 

gross level of aggregate analysis in this paper these data sets are a viable and useful 

information source. 

For all four data sets the total bandwidth connecting to a consolidated metropolitan 

area (CMSA) was tabulated. For the 1998 and 2000 data sets this was done through the 

construction of a matrix and the calculation of an accessibility index based on the 

bandwidth capacity of the links for each CMSA. For 1997 and 1999, the data was 

provided with total bandwidth connected to the CMSA already tabulated. Capacity was 

totaled for each CMSA as the total number of mega bits per second (Mbps) of fiber 

optic connections to the CMSA, running IP. Since binary connectivity data was not 

available for 1997 and 1999, total capacity was utilized for comparison across the four 

years of data. Other researchers, including Amaral et al. (2000) in their analysis of 

airline networks, utilize the weight of a link in their methodology to determine if a 

network is scale-free. This approach is commonly used when structural network data is 

not available or the number of nodes is too small for a log-log plot. Utilizing capacity as 

a measure of connectivity also makes sense, since it takes into account the large number 

of lines connected to any one CMSA and the common practice of partitioning these 

lines. The vast majority of fiber optic partitions are as T-1’s that carry 1.544 Mbps, thus 

the Mbps total for each city, can very roughly approximate the number of T-1 lines 

possibly available. 

The data for 1997-2000 was individually plotted as rank order distributions with 

log-log plots and fitted with a power law (see Figures 1-4). For each graph the x-axis is 

the total bandwidth connected to a CMSA and the y-axis is the CMSA ranked in 

descending order. Prior research by Moss and Townsend (2000) found a high level of 

similarity in the exponential curves for the rank-size distribution plots by number of 

edges connected to a metropolitan area. The power law exponent used provides a rate of 

increase indicator, an exponent of 2 would indicate an increasing sequence of 

1,4,9,16,25 or an exponent of 3 would indicate an increasing sequence of 1,8,27,64,125. 

The USA’s backbone network has been incrementally increasing its power law 
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exponent for each year, except for a small decrease from 1997 to 1998, but has also 

been increasingly moving away from a power law distribution. By 2000, the network’s 

power law exponent is 1.82, approaching the range found in other real world scale-free 

networks but the distribution is far from a power law. In fact the 2000 and 1999 data 

appears to be two different trends lines occurring. A closer examination reveals that 

there is a break between the top 110 CMSA’s and the bottom 37 each with a distinctly 

different slope. Interestingly, of the bottom 37 CMSA’s, 33 do not have any of the high-

speed 2.5, 5, or 10 Gbps connections. 

The first distribution runs from the minimally connected locations at 45 Mbps and 

follows the power law until a tail forms, starting with Fort Pierce, FL with 4,976 Mbps 

and ending with Syracuse at 5,624 Mbps, consisting of 18 city vertices. The distribution 

then resumes a normal power law trend to the top connected locations. The jump from 

Laredo, TX with 2,488 Mbps to Brownsville, TX at 4,976 appears at first glance to 

indicate a critical mass at which cities gain a level of preferential attachment into the 

network. Theoretically, as the USA Internet continues to evolve, these kinks in the 

distribution will work out as connectivity spreads to more nodes, erasing clustered 

hierarchies. A closer examination of the data reveals that the reason for this clustering is 

a technology shock in the network. Beginning, for the most part, in 1999 several 

networks began provisioning dense wave dimension multiplexing (DWDM) lines with 

capacities of 2448 Mbps in their networks, a large increase in capacity from the more 

common 45 and 155 Mbps lines. A connection to two cities provides 4,976 Mbps and 

caused a whole cluster of cities to be bumped up into the 4,976-5,624 Mbps noted in the 

distribution. Massive investment in Internet backbone capacity has occurred between 

1998 and 2000 in the US. In early 1998, only two of 38 national backbones offered 

bandwidth at OC-48 (2488 Mbps or 2.488 Gbps). By mid-2000, fully 17 of 41 backbone 

networks (41%) had installed capacity at bandwidths of 2488 Mbps or faster, as 

opposed to just 5% in 1998 (Gorman and Malecki, 2002). Such bandwidths easily 

overwhelm networks with a slower capacity: a single OC-48 cable has the same 

bandwidth as 55 of the older DS-3 (45 Mbps) capacity. The current standard is OC-192, 

which moves data at speeds of nearly 10 gigabits per second, and work is underway to 

implement OC-768 (40 Gbps) in the near future.  

The existence of a break and multiple slopes in the 2000 data could indicate that the 

diffusion of new high-speed technologies is not even across space and does not follow a 

power law. In order to test this assumption, a binary connectivity distribution was built 
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for 1998 and 2000 data, but unfortunately this was not possible for the 1997 and 1999 

data. The binary connectivity distributions can be found in figures 5 (1998) and 6 

(2000). When bandwidth capacity is stripped from the network, the trend reverses, and 

from 1998 to 2000 the connectivity distribution is getting closer to a power law fit. The 

exponent is also increasing, but the number is considerably lower than the bandwidth 

plots. This is most likely explainable, since the binary connectivity distribution does not 

take into account all connections in the network, but only whether there is – or is not – a 

connection between cities. The reality of the network topology is most likely 

somewhere between the two, following a power law with an exponent higher than 

binary but lower than bandwidth. It would seem that when weighted links are used to 

examine scale-free networks, there is the possibility of shocks in the network, in this 

case a technology shock. Interestingly while the IP networks studied do generally 

follow a power law, the diffusion of new technologies across the network do not follow 

a power law geographically or topologically. This also leaves the question whether 

applying curves, like power laws, is too simple an approach for weighted networks, but 

this issue falls out of the scope of this paper to answer. 

The next condition for the BA model is preferential attachment. There is a higher 

probability for a new or existing node to connect or reconnect to a vertex that already 

has a large number of links than there is to (re)connect to a low degree vertex (Barabasi 

and Albert, 1999). As the network grows incrementally, it expands following 

preferential attachment. The probability (Π) that a new vertex will connect with another 

vertex (i) depends on the connectivity ki of that vertex, so that Π(ki) = ki / Σj kj (Barabasi 

and Albert, 1999). Because of preferential attachment, a vertex that acquires more 

connections than another one will increase its connectivity at a higher rate; thus, an 

initial difference in the connectivity between two vertices will increase further as the 

network grows. This characteristic can be seen in the urban hierarchy of backbone 

connections. The Internet largely evolved out of Washington DC, through NSFNET and 

one of the original network access points, MAE East. Washington, DC has leveraged 

this historical preferential attachment to average the highest ranking over the four years 

of backbone connectivity data in the time series. While the rank order of the top ten 

cities has shifted, they have consistently benefited from preferential connectivity to 

maintain the majority of connections in the network. Although it should be noted, that 

early first mover advantage for preferential attachment has succumbed to market size in 

many cases; the most obvious in the data being New York’s move from a sixth to a first 
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position. Over the four time series, the top ten cities have on average accounted for 

57.4% of total bandwidth. The 1997-2000 time series appears to establish evidence of 

preferential attachment as one of many factors in the growth of the network. The actual 

testing of the BA equation to the time series was not possible, since matrix connectivity 

data was not available for all four years. This is a future research avenue that could 

yield interesting results, especially in regard to predicting the future connectivity and 

growth of the network. 

The last condition established by the BA model is re-wiring within the network. 

While this is not a feature of the network that can be tested explicitly, it can be 

addressed anecdotally outside what has been cited in the literature. Re-wiring of the 

Internet occurs at many levels but at dramatically different rates. The backbone 

network, in general, operates at layer 3 of the OSI (open system interconnect) 

networking model. This is the layer where routing between networks occurs and 

rewiring within this virtual network occurs on a very frequent basis. Topologies and 

routes change frequently as new peering arrangements occur on one hand and the actual 

path of traffic changes constantly as congestion and traffic fluctuate on the other. The 

physical fiber that is installed in the ground is re-wired at a much slower pace, but re-

wiring does occur. Fiber into a city is typically leased from a carrier’s carrier, like 

Enron, Williams, or Qwest. The long haul transit fiber into a city most often surfaces at 

a co-location facility, network access point, or a metropolitan area network interchange. 

At these junctures, the individual conduits leased by multiple different backbone 

carriers are split off and run by various networks to their customer’s locations. This 

allows for a considerable amount of fluidity in re-wiring topologies within backbone 

networks without actually digging up, turning off, or laying new fiber. The most 

dramatic example of this type of re-wiring was the change in Cable and Wireless’s 

network when they acquired MCI’s network. The network was significantly re-wired 

from a star topology focusing on connectivity to coastal cities to a partial mesh topology 

concentrating connectivity to interior vertices (Gorman and Malecki, 2000). While the 

re-wiring principle occurs at various levels of the data examined and at different rates, it 

is very much a factor affecting the distribution and connectivity of the network. 
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Figure 1. Power Law Distribution of the USA Internet 1997 
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Figure 2. Power Law Distribution of the USA Internet 1998 
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Figure 3. Power Law Distribution of the USA Internet 1999 
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Figure 4. Power law distribution of the USA Internet 2000 
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Figure 5. Binary connectivity distribution of the USA Internet 1998 
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Figure 6. Binary connectivity distribution of the USA Internet 2000 
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3.3  Italian telephone network 

 

The telecommunication system in Italy has tended to be under-developed. The SIP-

Telecom Italia monopoly on landline telecommunications, the delay in the use of the 

Internet and the slow decay of the price for long-distance calls prevented a development 

similar to that in the United States or other European countries. In particular, the lack on 

competition on the market did not bring about descending prices for long-distance – and 

international – calls. 

Only recently, Italy has started a path leading to descending prices and a 

liberalization of the market. This process is still on its way, and is also strongly 

supported by the European Union, in an effort to homogenize European 

telecommunication prices. 

The database used in this study includes landline phone calls in Italy, for 101 

districts.3 The data cover the volume of outgoing phone calls by district and their 

cumulative length. Calls are divided into 4 types: urban, inter-district, international and 

intercontinental. 

In order to verify whether the Italian telecommunication network, in our case 

represented by the volume of landline phone inter-district calls, qualifies as a free-scale 

network, we have to fit the data to a power law distribution. The expected exponent of 

the power law distribution for scale-free networks falls in between 2.1 and 3. 

By creating an ascending rank of the telephone use data and plotting it on a log-log 

scale, we can compare the obtained curve to a theoretic power law distribution (best-

fitting the data curve). The exponent of the power law function and the R2 value will 

give an indication of the adaptation of the data to a scale-free network. 

Figure 7 shows the plotting of the phone data on a log-log graph. The data are here 

interpolated with two functions: a power law function and an exponential function. 

The graph shows that the data can be interpolated by a power law function having a 

power equal to about 0.65, while the R2 value for the data adaptation is about 0.795. The 

exponent of the power law function is much lower than the value expected for scale-free 

networks, which is usually found between 2.1 and 3. 

The data fits best to an exponential function.4 The R2 value of 0.986 shows a very 

high degree of correlation of the phone data to the curve. This result suggests that long-

distance calls are distributed in Italy more as an exponential function than as a power 

law. 
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Figure 7. Log-log plotting of Italian landline phone calls for 1993 

 

The exponent of the interpolating power law function does apparently not change 

over time (see Figure 8). Although the level of calls is increasing, log-log power laws 

from different years run indeed parallel. This result is due to the strong relationship 

between number of phone calls and the population size of the cities.5 In fact, similar 

exponents for the power law function can be found plotting city population in the same 

way as for telephone traffic. Similar results have been obtained using data for 

cumulative phone time (instead of volume of calls) and different types of calls, like 

urban, international and intercontinental calls. Splitting the database in order to verify 

whether the North of Italy had a different behavior did not generate significant results, 

as a similar exponent for the power law function was found. 

Concluding, we can say that inter-district phone calls in Italy do not show any 

appearance of scale-free behavior. Indeed, the distribution of phone traffic shows a 

distinct exponential shape, imitating the distribution characteristic of many phenomena, 

as for instance, city size. 
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Figure 8. Italian phone calls over time (1989-1993) and interpolating power laws 

 

3.4  Peer-to-peer sharing networks: a sample case 

 

Peer-to-Peer networks (P2P) have been on a rising edge in the past years. Although it 

has been around for a while, only recently this networking model has been pushed to 

new heights. P2P networks can be seen as a model of a more efficient way for data 

exchange. In addition, applications of P2P networks in virtual enterprises and Business-

to-Business operations are estimated to be potentially successful (Gorman and Malecki, 

2002; Singh, 2001). 

Since the inception of Napster, P2P has become the easiest way to share, exchange, 

find documents and files on the Internet. Endless software had seen birth in the last 

years, expanding the heritage of the famous P2P software and joining millions of users 

worldwide in large communities of peers. 

More importantly, second-generation P2P software generally shares a new 

characteristic, which is the following. Information on available files on the network is 

not treated on centralized servers, as it was the case for Napster. It is instead available 

through the service given by private users who dispose of broadband connections and 

are willing to give up a small portion of bandwidth in order to serve as a node for the 

network. 



The 43rd European Congress of the Regional Science Association. Jyväskylä, Finland, August 27-30 2003 
 

 20

Each computer serving as a main node to the network receives and passes on file 

requests – and availability information – to the computers that make a connection to the 

network through it. In some cases, each computer connected to the network contributes 

to the passage of the information. This flow expands at any passage, as each node of the 

network is transmitting file requests on the attached nodes. The process goes on for a 

predefined amount of levels.6 

This kind of network seems to be structured in a small-world fashion. In order to 

properly analyze this issue, a snapshot of online users for a P2P network would be 

required. This kind of data would let us determine how the files usually available on 

P2P networks, amounting to thousands of Gigabytes, are distributed on the network’s 

nodes, that is, the users. 

In recent literature, Jovanovic et al. (2001) stress that P2P networks (the Gnutella 

network was used in their case study) have “strong small-world properties”, displaying 

higher clustering coefficients and shorter characteristic path lengths compared to 

random networks and 2D meshes.7 
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Figure 9. Distribution of shared files over the network users (2003) 

 

The aspect of P2P networks that we will now investigate concerns the results of a 

file search on the network. For our experiment, we used a well-known P2P software and 

generated a returning list of files by typing a simple keyword and interrogating the 
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network. The list of results obtained (in the month of April 2003) comprises 2801 file 

matches. More importantly, a portion of the matches – amounting to 270 files – is 

shared by multiple users. 

The data set comprising the files shared by at least two users will now be analyzed. 

Results range from the most common file, which is shared by 99 users, to 101 files 

shared by just two users. By creating a descending rank size rule of the amounts of users 

sharing the matching files, we can plot the data on a two-axis graph (see Figure 9). 

The log-log plot of our data shows that the files’ sharing seems to follow a power 

law distribution.8 The interpolating function’s R2 value equals to 0.9725, showing good 

approximation to the data, while the function’s equation shows an exponent value of -

0.9196. The good fitting of the model is confirmed by analysis of residuals, which show 

normal distribution.9 

As we explained above, the data set generating the graph in Figure 9 only comprised 

files shared by at least two users. Allowing in the remaining cases (single-user shared 

files), which anyway are the majority of the search results (2531 results on 2801), brings 

to severe change in the function shape (see Figure 10). The interpolating function’s 

fitting (R2) decreases down to 0.6441 and the power exponent is only –0.4101.10 This 

change in the results can be explained by a simple consideration. The files that are 

exchanged on the network – especially since we used a keyword for our search – are of 

a limited number. The remaining files can be considered peripheral in the perspective of 

the network.11 If each user’s available files are mostly a result of past exchanges on the 

network, unique files show scarce interest by the network. Furthermore, the choice of 

the exchange source, for an incoming file request, is not casual. This is usually guided 

by “preferential connectivity”, explainable here as a “the more, the better” behavior. 

The user searching for a document or file will likely choose the file that is shared by as 

many users as possible – and obviously still respecting the search criteria. 

Although the power law’s exponent in this experiment is low in comparison to 

scale-free networks (see Section 3.2), it should be noted that the search results over the 

peer-to-peer network do not represent a ‘topological’ network, but are just an indirect 

result of it. The present experiment only stands as a first explorative step towards a 

more in-depth analysis of P2P communication networks and the data exchange within. 

A second – and better – step might be the analyses of the users connected to the 

network. A snapshot of the network’s online users and their file availability would 

permit to identify the hypothetical presence of super-connectors – users disposing of 
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large bandwidth and archives – who serve a large part of the network demand or equity 

in file sharing. 
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Figure 10. Files’ sharing comprising single-user shared files (2003) 

 

3.5  Concluding remarks 

 

The experiments presented in this section demonstrate how “small-world” network 

properties are not universal across all networks.  While a power law distribution was 

found to exist under certain conditions in a particular peer-to-peer data exchange 

network and was generally discovered in the US IP backbone network, small-world 

network properties were not found in the Italian phone traffic network and they appear 

to have diminished over time in the US IP backbone network.  In fact, the Italian phone 

network, at least with the network indicators used, appears to more closely match an 

exponential function. These conclusions raise some interesting empirical, theoretical 

and methodological issues, and demonstrate the need to conduct a more extensive cross-

Atlantic comparison of networks in terms of small-world network properties. 
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4  Conclusions: Towards a Cross-Atlantic Agenda 

 

The results of the experiments undertaken in the previous sections are preliminary and 

they highlight the need for new data and methodologies to conduct cross-Atlantic 

comparisons of communications networks. One question that surfaces from the analysis 

presented here is why in certain cases scale-free properties exist and why in other 

communications networks they don’t, and whether or not the influence of these factors 

may vary geographically. Would one see differences in the findings when comparing 

similar networks between the United States and Europe? Thus there is a need for 

research into this conditioning factor of scale-free features of complex systems. 

Furthermore, there are several factors that may contribute to disparities across 

networks and that may require the use of different data sets on such complex 

phenomena. First, the underlying spatial structure of the infrastructure – in particular, 

the question whether it does have aspects to it that are planar – will likely play a 

prominent role in the ability of a network to evolve gradually into a small-world 

network. While the logical IP network for the United States may look similar to that in 

Europe, there may be differences in the spatial layout of the physical fiber in each 

region. Data on the European IP backbone network and the location of physical 

telecommunications infrastructure would help facilitate a more thorough study of this 

issue. Second, there may be social, economic or cultural factors that may contribute to 

differences in the findings across geographical regions. For example, the 

macroeconomic structure of Italian telecommunications – in particular, the question 

whether there is a monopoly, is much different from that in other countries in Europe or 

the United States. Do these and other factors significantly contribute to differences 

across regions? And third, there is the question of the quality and appropriateness of 

data that is currently available to undertake a small-world network analysis. In the case 

of the telephone network in Italy, outgoing landline calls were used to capture network 

dynamics indirectly, but in order to measure this more directly inter-district or point-to-

point flows would be more accurate and appropriate. Or in the case of peer-to-peer data 

exchange networks, perhaps a breakdown of the networks by region would allow for a 

more fruitful comparison of these types of networks by region.  

Clearly, there are also methodological issues to be resolved. The case study of the 

US IP backbone network highlighted the fact that the power law distribution 

methodology may be too simple for weighted networks. In fact, to date only a few 
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studies have addressed the challenge of developing a robust and statistically sound 

technique for examining scale-free properties in weighted networks. This should also be 

explored in future studies. 

 

Footnotes 

 
1 Efficiency in this case refers to the network characteristic of a large number of nodes 

having a low diameter. 
2 Barabasi and Albert’s definition of high connectivity is relative to the number of nodes 

in the network, and in this context, it simply means a large proportion on the total 

connections in the network. The odds of a node having a large proportion on 

connections in a network are small enough that they are likely to be “practically 

absent”. 
3 Main cities (Milan, Turin, Rome and Naples) are here divided in several districts. In 

addition, a database using aggregated metropolis has been used, providing similar 

results. 
4 The equation of the exponential function interpolating the data (for 1993) 

is xey 0229.0810*3 −= , while the power-law equation is 6499.0910 −= xy . 
5 A second factor of importance may be economic activity creating more than 

proportional phone traffic, because of intensive office activity. 
6 The Time-To-Live (TTL) parameter defines how deep (how many hops) the 

information and requests of the user will go through the network. For instance, in the 

case of Gnutella, probably the most known P2P software by now, peers usually keep a 

default value of 7 hops, which generally provide link up to ten thousand peers and a 

million files (Gorman and Malecki, 2001). 
7 In order to retrieve the Gnutella network’s topology, Jovanovic et al. (2001) employed 

a distributed network crawler based on the software protocol. The Gnutella network’s 

parameters for clustering and characteristic path length are compared to the ones 

generated by both a random graph and a 2D mesh of the same size. 
8 The equation for the interpolating power-law function (Figure 1) is as 

follows: 9196.077292 −= x.y . 
9 Komogorov-Smirnov normality test carried out on the residuals confirms the goodness 

of the model. 
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10 The resulting equation (Figure 2) is now: 4101.077.19 −= xy . 
11 A similar aspect was investigated by Xerox Palo Alto Research Center (PARC). They 

discovered that up to 50% of the search results on a Gnutella network is actually 

provided by the top 1% hosting peers, somehow centralizing the sharing process and 

probably letting peripheral peers serve for less mainstream file requests (Gorman and 

Malecki, 2001; Adar and Huberman 2000). 
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Annex A 

 

Table A.1. Power law applications in recent literature. Table adapted from Albert and Barabasi 

(2002). 

Authors Year Exp. Network 

    

Faloutsos M. and C. Faloutsos 1995 2.83 WWW (pair of nodes within h 

hops) 

Faloutsos M. and C. Faloutsos 1997 2.15 WWW (frequency of outdegree) 

Faloutsos M. and C. Faloutsos 1998 0.74 WWW (outdegree of Internet 

nodes) 

Faloutsos M. and C. Faloutsos 1998 0.48 WWW (eigenvalues of adjacency 

matrix) 

Redner S. 1998 3 Papers’ citations 

Kumar R. et al. 1999 2.1 WWW 

Adamic L.A. and B.A. 

Huberman 

1999 1.8 WWW (distribution of documents 

on domains) 

Barabasi A.-L. and R. Albert; 

Amaral L.A.N. 

1999-2000 2.3 Network of movie actors 

Abello J. et al.; Aiello W. et 

al. 

1999-2000 2.1 Telephone-call network 

Montoya J.M. and R.V. Solé 2000 1.05; 1.13 Ythan estuary; Silwood park 

Jeong H. et al. 2000 2.4 Protein (S. Cerev.) 

Jeong H. et al. 2000 2.2 Metabolic (E.Coli) 

Govindan R. and H. 

Tangmunarunkit 

2000 2.4 WWW (router) 

Broder A. et al. 2000 2.1 WWW 

Jeong H. et al. 2000 2.4 Cellular networks 

Ferrer i Cancho R. and R.V. 

Solé 

2001 2.7 Words (occurrence) 

Liljeros F. et al. 2001 3.4 Sexual contacts 

Newman M.E.J.; Barabasi A.-

L. et al. 

2001 1.2; 2.1; 2.5 Science collaboration graph 

 


