Geographically Weighted Poisson Regression (GWPR)
for Analyzing The Malnutrition Data in Java-Indonesia

Asep Saefuddin · Didin Saepudin · Dian Kusumaningrum

Abstract Many regression models are used to provide some recommendations in private sectors or government public policy. Data are usually obtained from several districts which may vary from one to the others. Assuming there is no significant variation among local data, a single global model may provide appropriate recommendations for all districts. Unfortunately this is not common in Indonesia where regional disparities are very large. Geographically weighted regression (GWR) is an alternative approach to provide local specific recommendations. The paper compares between global model and local specific models of Poisson regression. The secondary data set used in this study is obtained from Podes (Village Potential Data) of 2008 in Java. Malnutrition as the outcome variable is the number of malnourished patients in a district. The parameter estimation in the local models used a weighting matrix accommodating the proximity among locations. Iterative Fisher scoring is used to solve the parameter estimation process. The corrected AIC shows that geographically weighted Poisson model produces better performance than the global model. Variables indicating poverty are the most influencing factors to the number of malnourished patients in a region followed by variables related to health, education, and food. The local parameter estimates based on the geographically weighted Poisson models can be used for specific recommendations.

Keywords Geographically weighted Poisson regression · Weighting matrix · Local specific parameters

JEL Codes C12 · C21 · C31

Asep Saefuddin
Professor/Head of Statistical Modeling Division
Department of Statistics, Bogor Agricultural University, Bogor, Indonesia
email: a.saefuddin@gmail.com

Didin Saepudin
Department of Statistics, Bogor Agricultural University, Bogor, Indonesia
email: efu_din@yahoo.com

Dian Kusumaningrum
Department of Statistics, Bogor Agricultural University, Bogor, Indonesia
email: dian99163@yahoo.com
Introduction

Poisson regression is a statistical method used to analyze the relationship between the dependent variable and the explanatory variables, where the dependent variable is in the form of counted data that has a Poisson distribution. For example, the case of relation between cervical cancer disease incidence rates in England and socio-economic deprivation (Cheng et al. 2011). In the parameter estimation, it is assumed that the fitted value for all of the observations or regression points are the same. This assumption is referred to as homogeneity (Charlton & Fotheringham 2009).

However, there is a problem if the observations are recorded in a regional or territorial data, which is known as spatial data. If the spatial data was analyzed by Poisson regression, it will ignore the variation across the study region. The decision to ignore potential local spatial variation in parameters can lead to biased results (Cheng et al. 2011). Whereas, the local spatial variation can be important and such information may have important implications for policy makers.

Malnutrition data in Java island was chosen in this research because the number of malnourished patients was counted data which was assumed to have a Poisson distribution. Based on the data taken from National Institute of Health Research and Development (2008), there are differences of malnutrition prevalence in every province in Java island. The malnutrition prevalence was based on indicators of Weight/Age \((BB/U)\). East Java (4.8%) had the highest malnutrition prevalence, followed by Banten (4.4%), Central Java (4.0%), West Java (3.7%), DKI Jakarta (2.9%), and Jogjakarta (2.4%). These differences can be related to the phenomenon of spatial variability. The variability of malnutrition prevalence in each province might vary in each city or regency. Directorate of Public Health Nutrition (2008) described that the indirect factors that influence malnutrition are food supply, sanitation, health services, family purchasing power and the level of education. Nevertheless, geographical aspect could also influence malnutrition. Handling the malnutrition case is very important because malnutrition will directly or indirectly reduce the level of children intelligence, impaired growth and children development and decreased the productivity.

This research has three objectives. There are To compare the better model between global Poisson model and GWPR model for the malnutrition data in Java, to create the spatial variability map, and to analyze the factors influencing the number of malnourished patients for each regency and city in Java. Generally, Similar with the other research related with GWPR model, this research also creates the parameter estimates map of GWPR. However,
one of the difference is creating a significant explanatory variables map developed from t-map.

Theoretical Framework
Definition of Malnutrition
Based Statistics Indonesia (2008), definition of malnutrition is a condition of less severe level of nutrients caused by low consumption of energy and protein in a long time characterized by the incompatibility of body weight with age.

Poisson Regression Model
The standard model for counted data is the Poisson regression model, which is a nonlinear regression model. This regression model is derived from the Poisson distribution by allowing the intensity parameter μ to depend on explanatory variables (Cameron & Trivedi 1998).

Probability to count the numbers of events y_i (dependent variable for i^{th} observation) given variable x can be defined as:

$$ \Pr(y_i|x_i) = \frac{e^{-\mu_i} \mu_i^{y_i}}{y_i!} $$

where,

$y_i = 0, 1, 2, ...$

$i = 1, 2, ..., n$

$\mu_i = E(y_i|x_i) = exp(x_i' \beta)$

$x_i' = [1, x_{i1}, ..., x_{ik}]$

$k = \text{the number of explanatory variables (Long 1997)}.$

Poisson regression model defined by Fleiss et al. (2003) as,

$$ ln \mu_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_{(p-1)} x_{i(p-1)} = x_i' \beta.$$

where p is the number of parameters regression. μ_i is the expected value of Poisson distribution for observation i^{th} and

$\beta' = [\beta_0, \beta_1, ..., \beta_{p-1}].$

Breusch-Pagan Test (BP-test)
Breusch and Pagan (1979) in Arbia (2006) proposed a generic form of homoscedasticity expressed by the following equation:

$$ E(u_i^2 | x) = \alpha_1 x_{1i} + \alpha_2 x_{2i} + \cdots + \alpha_k x_{ki} $$
where, $\alpha' = (\alpha_1, \alpha_2, ..., \alpha_k)'$ is a set of constants. x_1 is the constant term of the regression and $x_2, ..., x_k$ are the constant terms for the regressors. The null and alternative hypothesis of BP-test are:

$H_0: \alpha_2 = \alpha_3 = ... = \alpha_k = 0$

$H_1: \exists_i, \text{where } \alpha_i \neq 0 ; (i=2,3,...,k)$

Under H_0, we assume that $\sigma_i^2 = \alpha_1 =$ constant.

Anselin (1988) in Arbia (2006) has described that Breusch-Pagan test statistics can be derived using the general expression of the Lagrange multiplier test, which could be expressed as:

$$BP = \frac{1}{2} \left(\sum_{i=1}^{n} x_i' f_i \right)' \left(\sum_{i=1}^{n} x_i' x_i \right)^{-1} \left(\sum_{i=1}^{n} x_i' f_i \right)$$

where,

$$f_i = \frac{\hat{u}_i}{\hat{\sigma}} - 1$$

$$\hat{u}_i = (y_i - \hat{\beta}' x_i)$$

$$\hat{\sigma}^2 = \sum_{i=1}^{n} \hat{u}_i^2$$

The test-statistic in equation (1) has a χ^2 distribution with $k-1$ degrees of freedom (k is the number of explanatory variables).

Geographically Weighted Regression

Geographically Weighted Regression (GWR) is an alternative method for the local analysis of relationships in multivariate data sets. The underlying model for GWR is:

$$y_i = \beta_0(u_i, v_i) + \sum_{k=1}^{l} \beta_k(u_i, v_i) x_{ik} + \epsilon_i$$

where $\{\beta_0(u_i, v_i), ..., \beta_k(u_i, v_i)\}$ are $k+1$ continuous functions of the location (u_i, v_i) in the geographical study area. The ϵ_is are random error terms (Fotheringham et al. 2002).

Geographically Weighted Poisson Regression

Geographically Weighted Poisson Regression (GWPR) model is a developed model of GWR where it brings the framework of a simple regression model into a weighted regression. Coefficients of GWPR can be estimated by calibrating a Poisson regression model where the likelihood is geographically weighted, with the weights being a Kernel function centred on u_i (u_i is a vector of location coordinates (u_i, v_i)) (Nakaya et al. 2005).

The steps used to estimate the coefficients of GWPR are:
1. Make a likelihood function of Poisson distribution from the n-numbers of response variable

\(y_i \sim \text{Poisson}(\mu(x_i, \beta)) \):

\[
L(\beta) = \prod_{i = 1}^{n} \frac{\exp(-\mu(x_i, \beta))(\mu(x_i, \beta))^{r_i}}{r_i!} \tag{2}
\]

where \(\mu(x_i, \beta) = \exp(x'_i \beta) \) (Long 1997).

2. Maximize the log-likelihood function in equation (2) based on [8]:

\[
\ln L(\beta) = -\sum_{i = 1}^{n} \exp(x'_i \beta) + \sum_{i = 1}^{n} y_i(x'_i \beta) - \sum_{i = 1}^{n} \ln y_i!
\]

3. Fotheringham et al. (2002) has described that an observation in GWPR is weighted in accordance with its proximity to location \(i^{th} \). So, the equation in the 2nd step can be expressed as:

\[
\ln^*L(\beta(u_i, v_i)) = -\sum_{i = 1}^{n} \exp(x'_i \beta(u_i, v_i)) + \sum_{i = 1}^{n} y_i(x'_i \beta(u_i, v_i)) - \sum_{i = 1}^{n} \ln y_i! w_{ij}(u_i, v_i)
\]

4. Make a partial derivatives of equation above with respect to the parameters in \(\beta'(u_i, v_i) \) and its result must be equal to zero:

\[
\frac{\ln^*L(\beta(u_i, v_i))}{\beta'(u_i, v_i)} = \{-\sum_{i = 1}^{n} x_i \exp(x'_i \beta(u_i, v_i)) + \sum_{i = 1}^{n} x_i y_i\} w_{ij}(u_i, v_i) = 0 \tag{3}
\]

However, this equation is iterative.

5. Based on Nakaya et al. (2005), The maximization problem in the equation (3) can be solved by a modified local Fisher scoring procedure, a form of Iteratively Reweighted Least Squares (IRLS). The iterative procedure is necessary except for the special case of Kernel mapping. In this local scoring procedure, the following matrix computation of weighted least squares should be repeated to update parameter estimates until they converge:

\[
\beta^{(l+1)}(u_i, v_i) = (X'W(u_i, v_i)A(u_i, v_i)^{(l)}X)^{-1}X'W(u_i, v_i)A(u_i, v_i)^{(l)}z(u_i, v_i)^{(l)}
\]

where \(\beta^{(l+1)} \) is a vector of local parameter estimates specific to location \(i \) and superscript \((l+1)\) indicates the number of iterations. The vector of local parameter estimates specific to location \(i \) when \(l^{th} \) iteration is defined as:

\[
\beta^{(l)}(u_i, v_i) = (\beta_0^{(l)}(u_i, v_i), \beta_1^{(l)}(u_i, v_i), ..., \beta_k^{(l)}(u_i, v_i))'
\]

\(\mathbf{X} \) is a design matrix and \(\mathbf{X}' \) denotes the transpose of \(\mathbf{X} \).

\[
\mathbf{X} = \begin{pmatrix}
1 & x_{11} & x_{12} & ... & x_{1k} \\
1 & x_{21} & x_{22} & ... & x_{2k} \\
1 & x_{31} & x_{32} & ... & x_{3k} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n1} & x_{n2} & ... & x_{nk}
\end{pmatrix}
\]
\(W(u_i,v_i) \) denotes the diagonal spatial weights matrix for \(i \)th location:
\[
W(u_i,v_i) = diag[w_{i1}, w_{i2}, ..., w_{in}]
\]
and \(A(u_i,v_i)^{(l)} \) denotes the variance weights matrix associated with the Fisher scoring for each \(i \)th location:
\[
A(u_i,v_i)^{(l)} = \text{diag}[\hat{\gamma}_1(\beta^{(l)}(u_i,v_i)), \hat{\gamma}_2(\beta^{(l)}(u_i,v_i)), ..., \hat{\gamma}_n(\beta^{(l)}(u_i,v_i))] \\
\]
Finally, \(z(u_i)^{(l)} \) is a vector of adjusted dependent variables defined as:
\[
z^{(l)}(u_i,v_i) = [z_1^{(l)}(u_i,v_i), z_2^{(l)}(u_i,v_i), ..., z_n^{(l)}(u_i,v_i)]'
\]
By repeating the iterative procedure for every regression point \(i \), sets of local parameter estimates are obtained.

6. At convergence, we can omit the subscripts \((l)\) or \((l+1)\) and then rewrite the estimation of \(\beta(u_i,v_i) \) as:
\[
\hat{\beta}(u_i,v_i) = (X'W(u_i,v_i)A(u_i,v_i)X)^{-1}X'W(u_i,v_i)A(u_i,v_i)z(u_i,v_i)
\]

Standard Error of Parameters in GWPR
The standard error of the \(k \)th parameter estimate is given by
\[
\text{Se}(\beta_k(u_i,v_i)) = \sqrt{\text{cov}(\hat{\beta}(u_i,v_i))_{k,k}}
\]
where,
\[
\text{cov}(\hat{\beta}(u_i,v_i)) = C(u_i,v_i)A(u_i,v_i)^{-1}[C(u_i,v_i)]'
\]
\[
C(u_i,v_i) = (X'W(u_i,v_i)A(u_i,v_i)X)^{-1}X'W(u_i,v_i)A(u_i,v_i).
\]
\(\text{cov}(\hat{\beta}(u_i,v_i)) \) is the variance–covariance matrix of regression parameters estimate and \(\text{cov}(\hat{\beta}(u_i,v_i))_{k,k} \) is the \(k \)th diagonal element of \(\text{cov}(\hat{\beta}(u_i,v_i)) \) (Nakaya et al. 2005).

Parameters Significance Test in GWPR
Hypothesis for testing the Significance for the local version of the \(k \)th parameter estimate is described as:
\[
H_0 : \beta_k(u_i,v_i) = 0 \\
H_1 : \exists k, \text{ where } \beta_k(u_i,v_i) \neq 0; (k=0,1,2..., (p-1)).
\]
The local pseudo \(t \)-statistic for the local version of the \(k \)th parameter estimate is then computed by:
\[
t_k(u_i,v_i) = \frac{\hat{\beta}_k(u_i,v_i)}{\text{Se}(\beta_k(u_i,v_i))}
\]
This can be used for local inspection of parameter significance. The usual threshold of p-values for a significance test is effectively $|t|>1.96$ for tests at the five percent level with large samples (Nakaya et al. 2005).

Kernel Weighting Function

The parameter estimates at any regression point are dependent not only on the data but also on the Kernel chosen and the bandwidth for that Kernel. Two types of Kernel that can be selected are a fixed Kernel and an adaptive Kernel. The adaptive Kernel permits using a variable bandwidth. Where the regression points are widely spaced. The bandwidth is greater when the regression points are more closely spaced (Fotheringham et al. 2002).

The particular function in adaptive Kernel’s method is a bi-square function. A bi-square function where the weight of the j^{th} data point at regression point i is given by:

$$w_{ij} = \begin{cases}
(1 - (d_{ij} / b_{i(k)})^2)^2 & \text{when } d_{ij} \leq b_{i(k)} \\
0 & \text{when } d_{ij} > b_{i(k)}
\end{cases}$$

where w_{ij} is weight value of observation at the location j for estimating coefficient at the location i. d_{ij} is the Euclidean distance between the regression point i and the data point j and $b_{i(k)}$ is an adaptive bandwidth size defined as k^{th} nearest neighbour distance (Fotheringham et al. 2002).

Materials And Methods

Data Sources

The data used in this study are secondary data from *Podes* (Village Potential Data) of 2008 in Java. The objects of this research are 112 regencies and cities in Java island.

The dependent variable used in this research is total number of malnourished patients during last three years in each regency or city in each regency and city in Java island. It is initialized by name of MalPat. The explanatory variables is selected from four aspects, which include poverty, health, education, and food aspect. There were 14 explanatory variables used which is described in detail in Table 1.

Methodology

In the case of spatial processes which is referred to spatial non-stationarity (Fotheringham et al. 2002). Geographically Weighted Poisson Regression (GWPR) will be the most appropriate analysis if the data has a non-stationary condition and the dependent variable was assumed
Poissonly distributed. GWPR model uses weighting matrix which depends on the proximity between the location of the observation. In this research, a modified local Fisher scoring procedure is used to estimate the local parameters of GWPR iteratively and using the bi-square adaptive Kernel function to find the weighting matrix is expected. The Kernel function determines weighting matrix based on window width (bandwidth) where the value is accordance with the conditions of the data and adaptive because it has a wide window (bandwidth) that varies according to conditions of observation points.

After estimating the GWPR parameters, the map of spatial variability for each parameters of GWPR and a significant explanatory variables map is created. The softwares used for this research are GWR4 and ArcView 3.2.

Table 1 Description of explanatory variable

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Explanatory variable</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poverty</td>
<td>FamLabour</td>
<td>Total number of families whose members are farm labour in each regency or city</td>
<td>Families</td>
</tr>
<tr>
<td></td>
<td>FamRiver</td>
<td>Total number of families residing along the river in each regency or city</td>
<td>Families</td>
</tr>
<tr>
<td></td>
<td>FamSlums</td>
<td>Total number of families residing in the slums in each regency or city</td>
<td>Families</td>
</tr>
<tr>
<td></td>
<td>FamPovIns</td>
<td>Total number of families which received poor family health insurance (Asuransi kesehatan keluarga miskin/Askeskin) in each regency or city</td>
<td>Families</td>
</tr>
<tr>
<td>Health</td>
<td>Midwife</td>
<td>Total number of midwifes in each regency or city</td>
<td>Persons</td>
</tr>
<tr>
<td></td>
<td>Doctor</td>
<td>Total number of general doctors in each regency or city</td>
<td>Persons</td>
</tr>
<tr>
<td></td>
<td>ISP</td>
<td>Total number of integrated services post (Posyandu) in each regency or city</td>
<td>Units</td>
</tr>
<tr>
<td></td>
<td>ActISP</td>
<td>Total number of villages that all of integrated services post (Posyandu) in a village is actively operated in each regency or city</td>
<td>Villages</td>
</tr>
<tr>
<td></td>
<td>HlthWrk</td>
<td>Total number of mantri kesehatan and dukun bayi in each regency or city</td>
<td>Persons</td>
</tr>
<tr>
<td>Education</td>
<td>ElmSch</td>
<td>Total number of elementary schools or equivalent in each regency or city</td>
<td>Units</td>
</tr>
<tr>
<td></td>
<td>JHSch</td>
<td>Total number of junior high schools or equivalent in each regency or city</td>
<td>Units</td>
</tr>
<tr>
<td></td>
<td>Illiteracy</td>
<td>Total number of villages that there are eradication programme of illiteracy during one last year</td>
<td>Villages</td>
</tr>
<tr>
<td></td>
<td>DiffPlace</td>
<td>Total number of villages having insufficient or poor access towards the village office and the capital of sub-district in each regency or city</td>
<td>Villages</td>
</tr>
</tbody>
</table>
Result and Discussion

Data Exploration

The distribution of malnourished patients in Java island can be seen in Figure 2. From the map, we can see the variability of malnourished patients for each regency and city in Java island. For an example, the number of malnourished patients in Purworejo (2,002), Karawang (2,125), and Majalengka (2,137) are very high. But, the number of malnourished patients in the regions of DKI Jakarta province are low which is lower than 500 patients. The regions with high numbers of malnourished patients must be handled seriously than the others. One of the solution is by determining the influencing factors to the malnourished patients for each regions. If the factors have been known, it can be used by policy maker for solving this problem.

A boxplot was also used for exploring the data. The figure of boxplot for each variable was shown in Figure 1. From the boxplot, it can be seen that there were five explanatory variables that does not have outliers, which were FamLabour, Illiteracy, ISP, ActISP, and HlthWrk variable. The other explanatory variables have upper extreme values as outliers. The outliers were found in the regions with high values of FamLabour, Illiteracy, ISP, ActISP, and HlthWrk. As for an example, Bogor regency have upper extreme value in FamSlums, JHSch, and ElmSch variable. It means that Bogor regency have high number values of families residing in the slums, and many of their people have junior high schools or equivalent, or elementary schools or equivalent education. Therefore the outliers in each of the variables are still used in further analysis because every region will be created a local model of GWPR.

![Boxplot of dependent variable and explanatory variables](image)

Fig. 1 Boxplot of dependent variable and explanatory variables
Variables Selection

Variable selection in developing the GWPR model is done by exploring the correlation between two explanatory variables using Pearson’s correlation, which is showed in Table 2. The explanatory variable with higher correlation to dependent variable (if there are two variables that are highly correlated) is chosen for the global model. From 14 explanatory variables, there are only seven explanatory variables that are not highly correlated to each other. They were FamLabour, FamRiver, FamSlums, ISP, Doctor, DiffPlace, and JHSch variable. Therefore, these seven variables were used in the further analysis. All of the aspects are represented in the selected explanatory variables.

Global Model

A traditional global Poisson regression model, namely global model, was fitted to the malnourished patients in one regency or city based on the selected explanatory variables. As
explained above, seven explanatory variables were selected and used to create global model. Their parameter estimates and p-values are displayed in Table 3.

A Global model from seven explanatory variables, namely global model 1, showed that only one variable was not significant at five percent level of significance which was Doctor variable. This global model will be selected as model to create GWPR model. In this research, non-significant variable still used for modeling GWPR because this model accommodated all factors. Therefore, it will explain the influencing factors of the number of malnourished patients better.

Spatial Variability Test
The test used for detecting spatial variability was Breusch-Pagan test (BP test). The null hypothesis for this test is error variance for all of the observations is constant. While, the alternative hypothesis is heteroscedasticity in error variance (there are variability among observations).

From Table 3, the p-value of BP test was significant at a five percent significance level. It means that there are variability among observations. Therefore, there are special characteristics for each region. Hence, the data must be analyzed by local modeling in order to capture the variation of data and explain the characteristic of each region better.

Bandwidth Selection
The method used for selecting an optimal bandwidth is bi-square adaptive Kernel. The optimum bandwidth selection is a feature of the golden section search method in the GWR 4.0 software (see Fotheringham et al. 2005).

![Fig. 3](image.png) **Fig. 3** Effective number of GWPR parameters (K) and the AICc plotted against adaptive kernel bandwidth
From Figure 3, it can be seen that the selected optimum bandwidth from this method is 46 neighboring regencies or cities nearest to the \(i^{th}\) regency or city. In selecting the optimum bandwidth, GWPR model with bi-square adaptive Kernel has an AICc value of 6705.39. The effective number of GWPR parameters is 32.23. Afterwards the selected optimum bandwidth will be used to calculate the weighting matrix in a regency or city.

Table 3 Statistics Comparison of Global Model and GWPR Model

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Global Model</th>
<th>GWPR Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>Pr(></td>
</tr>
<tr>
<td>Intercept</td>
<td>5.039338</td>
<td>< 2x10^{-16}</td>
</tr>
<tr>
<td>FamLabour</td>
<td>0.000002</td>
<td>< 2x10^{-16}</td>
</tr>
<tr>
<td>FamRiver</td>
<td>0.000053</td>
<td>< 2x10^{-16}</td>
</tr>
<tr>
<td>FamSlums</td>
<td>-0.000008</td>
<td>< 1.46x10^{-12}</td>
</tr>
<tr>
<td>ISP</td>
<td>0.00074</td>
<td>< 2x10^{-16}</td>
</tr>
<tr>
<td>Doctor</td>
<td>-0.000029</td>
<td>0.124</td>
</tr>
<tr>
<td>DiffPlace</td>
<td>0.001539</td>
<td>< 7.74x10^{-9}</td>
</tr>
<tr>
<td>JHSch</td>
<td>-0.001113</td>
<td>< 2x10^{-16}</td>
</tr>
<tr>
<td>BP test***</td>
<td>37.5913</td>
<td>3.623x10^{-6}</td>
</tr>
<tr>
<td>AICc</td>
<td>11657.58</td>
<td></td>
</tr>
<tr>
<td>AICc Difference</td>
<td>4952.14</td>
<td></td>
</tr>
<tr>
<td>Deviance R-Square</td>
<td>75.06 %</td>
<td></td>
</tr>
</tbody>
</table>

Notes: *Significant at \(\alpha = 5\%\)
** Value in 10 digit decimals is 0.0000000089
*** Degree of freedom fo BP test is 7.

GWPR Model

The next analysis is modeling with GWPR. From this model with an optimum bandwidth, GWPR model also has a minimum AICc value. Before further interpretation of GWPR model, GWPR model must be compared with global model to select the best model between them.

Table 4 showed that the AICc difference with the global model is 4952.14. It indicates that GWPR model is better than the global model. This difference of AICc of global model is very high. Based on the AICc difference criterion from Nakaya et al. (2005), GWPR model was better than global model.

The performance of GWPR model compared to the global model also can be seen from the residual values. According to Figure 4, residual of GWPR model is relatively less than global model for each region. The total absolute residual value is 14,467.94 for GWPR model and 22,020.07 for the global model. The others, deviance R-square for GWPR model is higher.
than global model. There are 75.06% for global model and 85.83% Therefore GWPR model will be considered as the best model.

Fig. 4 Absolute residual of GWPR and global model plotted against observations

Stationary Parameter and Fitted Model of GWPR

The method used to test the stationarity in GWPR parameters is done by comparing the inter-quartile range of GWPR model and the standard error of the global model. If the local inter-quartile range (IQR) is twice the global standard error or more, then the variable requires a non-stationary model to represent it adequately (Cheng et al. 2011).

Simple test in Table 3 showed that all of the variables have an inter-quartile range more than twice the global standard error. This indicates that all of variables are better fitted by a non-stationary model in GWPR than using a global model. A non-stationary model allows greater prediction power (Cheng et al. 2011), and as a result, leads to greater understanding of the relation between the number of malnourished patients and seven explanatory variables selected which come from four aspects and how it varies over space in relation to deprivation conditions regionally.

The final fitted model of GWPR is given as:

$$\ln MalPat_i = \beta_0(u_i, v_i) + \beta_1(u_i, v_i) \text{FamLabour} + \beta_2(u_i, v_i) \text{FamRiver} - \beta_3(u_i, v_i) \text{FamSlums} +$$

$$\beta_4(u_i, v_i) \text{ISP} - \beta_5(u_i, v_i) \text{Doctor} + \beta_6(u_i, v_i) \text{DiffPlace} - \beta_7(u_i, v_i) \text{JHSch}$$ (4)

The symbol of $\ (u_i, v_i) \ $ besides the parameter estimates in equation (4) defined that the parameter estimatesis in a non-stationary condition.

Spatial Variability Map

Concerning the individual significance of the parameters, though they are all statistically significant in the global regression, there are several non-significant parameters in the GWPR models. Therefore, spatial variability map is needed. GWPR parameter estimates map has
some advantages. First, the map provides specific information for each area including parameter estimates which are calculated in the case of global models. Second, the map also can lead to some regions which have highly relation to dependent variable for each explanatory variable.

Figure 5 shows the maps of local parameter estimates of GWPR for intercept, FamLabour, FamRiver, FamSlums, ISP, Doctor, DiffPlace, and JHSch variable. The maps indicated that the eight parameter estimates are not equal for all locations. The darker color of the map indicates a higher value of a local parameter estimate.

The local parameter estimates of intercept were very high in the regencies and cities in border area of West Java and Central Java province, and also in all of regencies and cities in Banten province. This indicate that the higher malnourished patients in this regions when the other variables are constant. However, they were pretty low in most of the regencies and cities in border area of Central Java and East Java province and it indicates the low relation to the malnourished patients.

The local parameter estimates of FamLabour were very high in the regencies and cities in the west area of East Java province, but pretty low in area of DKI Jakarta and Banten province and also in the west area of West Java province. The map shows that all of the local parameter estimates of FamLabour variable are positive. This indicated that increasing the number of families whose members are farm labour would increase the number of malnourished patients for each region. One of the recommendation to the local or central government is to make a welfare programme for farm labours which indirectly decrease the poor people. This programme might decrease the number of malnourished patients for each region.

Next, the local parameter estimates of FamRiver were pretty low in Banyumas, Banjarnegara, Pekalongan, Tegal, Purbalingga regency, Tegal, Pekalongan city, and all of the regencies and cities in the central and east area of East Java province. However, the parameter estimates in the regions of Rembang, Blora, Tuban, Bojonegoro, and most of the regencies and cities in West Java province were very high. The higher value of local parameter estimates indicated that these regions would have a higher increase of malnourished patients. Therefore, the regions with high parameter estimates must be given a solution for this problem by the government, especially local government. For example, the local government in these regions might build more flat house units like in DKI Jakarta to relocate the families residing along the river. This recommendation is expected to decrease the number of malnourished patients.
In FamSlums variable, the parameter estimates of all of the regencies and cities in the central and western area of East Java and Tuban regency were very high. However, the regencies and cities in West Java, DKI Jakarta, Banten province, some regencies and cities in the west region of Central Java province, Ponorogo, and Trenggalek regency have a pretty low negative local parameter estimates. Their negative value indicated that increasing the number of families residing in the slums would decrease the number of malnourished patients. It was clear that poverty aspect in general can increase the number of malnourished patients. Therefore, the FamSlums as one of the representation of poverty aspect had a different expectation because of the negative value of its local parameter estimates. It might be caused that in these regions were not often recorded malnourished patients.

The FamRiver variable was the highest influencing factors to the number of malnourished patients compared to the other variables which represent the poverty aspect, which is based on the comparison of the mean of local parameter estimates from FamLabour, FamRiver, and FamSlums variable according to Table 3. This indicated that the regions with high number of families residing along the river must be given the serious attention by local government.
All of the local parameter estimates in ISP variable were positive. This indicated that the number of integrated services post (Posyandu) in each region are positively related to the expected number of malnourished patients. The possible reason is that increasing of integrated services post (Posyandu) units, which have been built by the government, through the Ministry of Health in each region was done without considering that a region is an endemic area or not to malnutrition case. The other reason is that increasing the number the integrated services post (Posyandu) in a region may cause the detection of many malnourished patients. These patients are also allowed to have a consultation about malnutrition to the health workers in Posyandu.

Then, the local parameter estimates of Doctor were low and negative in Ciamis regency, Banjar city, and all of the regencies and cities in Central Java, East Java, and DI Yogyakarta province. In these regions, increasing the number of doctors would decrease the expected number of malnourished patients. This condition may be used as a recommendation to the government that these regions need additional health workers, especially doctors in order to decrease the malnutrition case. However, the local parameter estimates of Doctor variable were positive in the other regions. If we look into the map of parameter estimate in Doctor variable, the regions with positive local parameter estimates includes all of regencies or cities in DKI Jakarta, Banten, and most of the regions in West Java province. In these regions it was possible that the need of the number of doctors was high, especially in big cities like in DKI Jakarta province.

In the education aspect, the local parameter estimates of JHSc variable were negative in most regencies and cities in Java island, except for Wonogiri, Ngawi, Magetan, and Pacitan regency. Their values indicated that increasing the number of junior high school or equivalent buildings would decrease the expected number of malnourished patients. In the four other regions, it was possible that the increase of junior high school or equivalent buildings as an education aspect representation did not have a direct influence to the number of malnourished patients.

The last variable is DiffPlace. All of the regencies and cities in Central Java and DI Yogyakarta have positive local parameter estimates. The model indicated that increasing the total village having insufficient access towards the village office and the capital of sub-district would increase the expected number of malnourished patients. Meanwhile, for other regions, DiffPlace variable was negatively related to the number of malnourished patients. It might be caused by more sufficient access towards the village office and the capital of sub-district, so
there are many malnourished patients being recorded by the local government official workers, especially by the health workers.

The local parameter estimates that were inversely related with some variables might produce bad interpretation. For better results of GWPR model, the study of regions for the next research should be done at a lower, such as be sub-district or village level. Using lower levels might enhance the precision of parameter estimates in spatial analysis.

Significant Explanatory Variables Map

GWPR model usually displays the map of non-stationary parameter estimates. However, in every point of the regression, in this case each regency or city, it also has a pseudo t-value which is formulated as by the parameter estimate divided with the standard error in each point of the regression. As a result, the GWPR local parameters of explanatory variables (we exclude the intercept) have t-maps (Mennis 2006). Each t-map has an advantage that is it can detect the significance of an explanatory variables for each region. The other advantage is it can detect the combination of significant explanatory variables for each region. But, the disadvantage of this mapping approach is that potentially interesting patterns may not be observed regarding the magnitude of the relationship between the explanatory and dependent variable as contained in the actual parameter estimate values, as well as in the magnitude of the significance (Mennis 2006).

In this research, every t-map of GWPR local parameter of explanatory variable would be joined as a map which is named as map of significant explanatory variable. Figure 6 shows the significant explanatory variable map. The explanatory variables used in the map are the explanatory variables used in the selected global model.

![Significant explanatory variable map](image)

Fig. 6 Significant explanatory variables map

The map in Figure 7 displays six groups of color. The colors indicate that there were different groups without implaying a rank like the map in Figure 4. The dominant color was
dark brown, it indicates that in these regions, all of the explanatory variables were significant. A region where FamSlums and DiffPlace variable were not significant is Ponorogo regency. Tulungagung, Pacitan, and Majalengka regency only had DiffPlace variable as a significant variable. Then, FamRiver variable was significant in eastern area of East Java. FamSlums variable was not significant in Pemalang, Trenggalek, and Purbalingga regency. The last group is the regions which JHSch was not a significant variable. The regions include Blora, Wonogiri, and Ngawi regency. The other advantage for creating this map is it can give recommendations for policy maker or the local government and central government especially Ministry of Health about the factors influencing the number of malnourished patients in each regency or city in Java island.

Conclusion And Recommendation

Conclusion
GWPR model was proven to be a better model than global model. GWPR model had highly difference of AICc compared to the global model. A condition of non-stationarity in parameters was fulfilled, and its residual relatively less than global model for each region. Map of parameter estimates showed more meaningful results. The FamRiver variable was the highest influencing factors to the number of malnourished patients compared to the other variables which represent the poverty aspect. There were six groups of the factors influencing the number of malnourished patients for each regency and city in Java based on the map of significant explanatory variable.

Recommendation
For better results of GWPR model, the study of regions for the next research should be lower level than regency or city level, such as the sub-district or village level. Conducting GWPR at this level might give a better local parameter estimates.

References

