Wage flexibility and local labour markets: homogeneity of the wage curve in Spain

Roberto Bande\(^a\), Melchor Fernández\(^a\)

and Víctor Montuenga\(^b\)

This version: June, 2011

Abstract

In this paper we analyse wage flexibility in Spain and its regional differences, departing from the estimation of wage curves. Specifically, and using data from the Wage Structure Survey, we proceed to estimate regional wage equations, which explain observed wage received by workers to a group of personal and job characteristics, as well as the unemployment rate. This analysis allows testing the existence of regional differences in the degree of wage flexibility, which may have an important influence in the evolution of regional unemployment, given its impact on the ability of the local labour market to absorb negative shocks. Estimated results indicate that regions which suffer from larger unemployment rates exhibit lower wage flexibility. Collective bargaining reforms should pursue more wage flexibility, especially in regions of high joblessness.

Keywords: Wage flexibility, wage curve, Wage Structure Survey, Spain, regional unemployment

JEL codes

\(^v\) Roberto Bande acknowledge financial support for Xunta de Galicia, project 10SEC242003PRR. Also, comments from other members of the GAME research group are acknowledged. Remaining errors are our sole responsibility.

\(^*\) Corresponding author. Address: Department of Economics. Facultad de Ciencias Económicas y Empresariales. Avenida do Burgo s/n. 15782 Santiago de Compostela. A Coruña (Spain). E:mail: roberto.bande@usc.es. Phone: +34 881 811 666. Fax: +34 981 547 134.

\(^a\) GAME-IDEGA, University of Santiago de Compostela.

\(^b\) University of Zaragoza.
1. Introduction

Three major features characterise the Spanish labour market through the last decades. First, and the most evident, the unemployment rate in Spain is considerably larger than in other EU countries. The minimum rate attained by the Spanish economy since 1980 was about 8% at the end of 2007, well above the EU average and only smaller than some recently-incorporated East-European countries such as Slovakia or Poland. Between 1980 and 2000 and after 2008, the unemployment rate by far has been the maximum within the EU and the OECD countries. There is a consensus in the literature (see the review by Blanchard, 2006) that differences in current unemployment rates in Europe can be explained by the different response in each country through the interaction between external shocks and the national labour market institutions, revealing that Spain is a country case of study (Bentolila and Jimeno, 2006).

A second feature is the huge volatility in employment. Data from the Labour Force Survey\(^1\) shows that, between 1994 and 2007, more than 7 millions of jobs were created (more than a half of the growth in employment in the EU), whereas since 2008 the number of unemployed has surged from 1.7 millions to nearly 5 millions, much more than any other country in the Euro area.\(^2\) Employment in Spain is highly procyclical with respect to its neighbours: during upturns it creates more jobs than the EU, but during recessions also more workers are fired. Again, labour market institutions are shown to play an important role in this matter (Bentolila and Jimeno, 2006). Particularly, the (external) flexibility at the margin introduced by the extension of temporary contracts (the temporary rate has stood well above 30% since their inception in the mid-eighties) has been regarded as key in this enormous volatility in employment growth (Dolado et al., 2008).\(^3\) In this respect, the labour institutional structure in Spain leaves small room for internal and wage flexibility, and migration is scarce, so that the use (and abuse) of temporary contracts is the only way to provide flexibility in labour relationships. Moreover, the integration of almost 500,000 in-migrants per year during 2000-2006 has helped in achieving this

\(^1\) In 2002 and 2005 the Spanish Labour Force Survey experienced major methodological reforms, which prevent from homogeneity in the figures. However, the general trends are clear.

\(^2\) In fact, since the global economic crisis began at the end of 2007 more than 5 million workers have joined the ranks of the unemployed in the Euro area as a whole. This implies that more than 50% of the new unemployed in the Euro area during the crisis are Spanish. The sharp decrease in employment reflects the fact that in Spain the labor market has mainly adjusted to the decline in output via a reduction of employment rather than via a combination of wages and hours reductions.

\(^3\) The Spanish labour market has experienced a number of reforms (the first in 1984, with the legalization of fixed-term contracts, the last in 2010, with strong rejection of worker’s unions) that progressively have aimed to increase firms’ ability to better adapt to the economic situation.
external flexibility, since most of these workers have been allocated in temporary employment, and were ready to receive lower wages (Bentolila et al., 2008). Finally, and parallel to the volatility in the number of employed workers, a new dimension has been made apparent in the labour market, namely the different treatment of certain labour market groups, as young, female, or in-migrant workers, who systematically present lower employment rates and higher unemployment and temporary rates.

The third major feature of the Spanish labour market is the existence of important and persistent regional disparities in the unemployment rate. Employment growth has not been homogeneously distributed across Spanish regions, basically due to the existence of important regional differences in wage setting, as a consequence of important imitation effects in the wage bargaining (Bande et al. 2007, 2008). These authors show that, in general, the less productive sectors in the less productive regions link their wage growth to the conditions prevailing in the most productive sectors of the most productive regions. This increases unit labour costs, especially for less productive regions, and thus limits their ability to create employment, mainly during economic upturns. As a consequence, regional unemployment disparities in relative terms exhibit a marked countercyclical behaviour.

This paper aims to analyse jointly the two latter features: the increased flexibility with persistent regional disparities. The high rates of temporary workers and the entry of huge in-migration has endowed the Spanish labour market with a way to increase flexibility, which has had some impact on wages. We add new empirical evidence to the existing literature by identifying the changes in the degree of pay flexibility in the Spanish labour market during the last two decades, both at the aggregate and at the regional level estimating regional wage curves.

The paper is organised as follow. Section 2 summarises a simple model to understand the existence of regional unemployment disparities, and describes the most recent evolution of

4. During the downturn, workers holding temporary contracts have borne the brunt of job losses, as firms have adjusted to the sudden decline in demand by simply not renewing these contracts. Temporary employment dropped by 8% in 2008 and by 18.4% in 2009, while open-ended employment rose by 3% in 2008 and slightly decreased (by 0.9%) in 2009.

5. This is a well-known problem in Spain. The International Monetary Fund and the Bank of Spain believe that the collective bargaining system, dominated by industry-wide agreements that cannot be modified, is too rigid. In fact, in June 2011 the Spanish government will impose a reform of the collective bargaining system. Among the main objectives of this reform, the most remarkable is making wage settlements more sensitive to economic conditions at the firm-level, reducing the number of collective bargaining negotiations, eliminating the automatic renewal of collective bargaining agreements in the absence of a new agreement, and exploring ways to strengthen the link between wages and productivity growth.
employment and unemployment in the Spanish labour market. Section 3 summarises the existing estimates of wage flexibility in Spain and Europe, and discusses our theoretical and empirical framework. Section 4 presents evidence of differences in regional labour market flexibility, using data from the Wage Structure Survey, and finally, Section 5 concludes.

2.- Wage flexibility in Spain and Europe: review of the empirical evidence

2.1. Theoretical rationale

Labour market flexibility is a key assumption under the standard neoclassical models, and refers to a situation where wages are flexible and labour force is mobile in the geographical and occupational dimension. This implies that under the standard assumptions made in this type of models, if we add perfect competition in the product market, full employment is guaranteed. However, at least in European countries, full employment has been the exception rather than the norm since the early 80’s. The high and persistent unemployment rates registered in the European economies during the 80’s and 90’s have generated a large body of literature that, fundamentally, concluded first that the main source of high unemployment was an incorrect setup of labour market institutions that avoided complete adjustment in the labour market (Layard et al., 1991 and OECD, 1994) and, some years later, that this phenomenon is better explained by the interaction between those labour market institutions and the response to external shocks (Blanchard and Wolfers, 2000; Bertola et al., 2001; Nunziata, 2002), which shapes the configuration of unemployment rates. 6 Rigidity prevents labour markets from rapidly responding to external shocks, avoiding adjustment processes to complete themselves out, with important differences across countries. Consequently, the economic policy recommendation was clear: labour market should be more flexible to absorb possibly asymmetric adverse shocks. In empirical work, labour market flexibility is usually proxied by pay or wage flexibility, 7 that is, the response of wages to the general conditions of the labour market, usually measured by the unemployment rate.

A standard framework describing labour market relationships may be depicted as follows (see also Blanchard and Katz, 1997, 1999). Assume that workers set their wage through wage

6 Of course there are other interpretations, but they did not have such an impact as the ones referred to. See for instance Arestis et al. (2007) or Karanassou et al. (2008). In these models it is capital accumulation which accounts for major unemployment swings in European countries.

7 See Monastiriotis (2006) for an in-depth discussion on the issue of labour market flexibility.
bargain, and that given the expected level of prices, the real wage bargained by the union (or workers representatives) depends negatively on the unemployment rate (higher unemployment implies higher opportunity costs of demanding a too high wage), and positively on a set of labour market institutions, such as unemployment benefits, minimum wage, etc. Thus, the wage setting equation in this labour market may be written as

\[w - p^e = \alpha_0 - \alpha_1 u + \alpha_2 \Psi \]

(1)

where \(w \) is the log of the nominal wage, \(p^e \) is the log of the expected level of prices, \(u \) is the unemployment rate, and \(\Psi \) is a vector of labour market institutions. We assume that the \(\alpha \)'s are positive constants. Note that \(\alpha_0 \) measures exogenous factors that determine the level of bargained real wages by workers (for instance business cycles, inflation pressures...). \(\alpha_1 \) is the degree of wage flexibility, i.e., the unemployment-elasticity of real wages, and \(\alpha_2 \) accounts for the effect of labour market institutions in wage bargaining.

Assume that firms operate in non-competitive markets and, thus, set prices as a margin over unit labour costs. The standard price equation may be written as

\[w - p = \nu \]

(2)

where \(\nu \) is the log of \((1+\eta)\), being \(\eta \) the price elasticity of product demand. Thus, in this standard labour market model, workers set real wages according to their bargaining power (determined by the unemployment rate), and firms set prices according to their pricing rule. If we allow expectations to be fulfilled, and solve for the unemployment rate, we derive the natural rate of unemployment

\[u_n = \frac{\alpha_0 + \alpha_2 \Psi + \nu}{\alpha_1} \]

(3)

with \(\frac{\partial u^n}{\partial \Psi_j} > 0 \) for \(i=1,2..j \), i.e., the natural unemployment rate is increasing in the labour market institutions. Also, note that the natural rate is increasing in the exogenous factors that push wages up (\(\alpha_0 \)), in firms mark-up (\(\nu \)) and decreasing in the degree of wage flexibility (\(\alpha_1 \)). Given a set of product competition conditions, the evolution of the natural rate must be related to the evolution of both labour market institutions and/or wage flexibility, i.e., the response of real wages to the unemployment rate.
This basic framework has been used in order to explain the persistence of high unemployment rates in Europe (see *inter alia* Layard *et al.*, 1991, Blanchard and Wolfers, 2000). Different labour market institutions may explain different labour market performance, through different natural rates (or NAIRU’s). Moreover, if some kind of hysteresis mechanism is found, the lack of wage flexibility may increase permanently the natural rates (see Blanchard and Jimeno, 1995, for instance).

However, at the regional level labour market institutions cannot be the source of regional variation in unemployment, given that, usually, legal systems ensure that workers are equally treated across regions within a country. Thus in order to adapt the above theoretical framework to the regional context, we assume that the set of labour market institutions \(\Phi \) are constant across regions. Therefore within each region \(r \) of a country we find a regional natural rate of the type

\[
\alpha_{0,r} + \alpha_{2,r} \Psi + \nu
\]

Thus, assuming that also the degree of product competition is similar across regions, the main source of geographical unemployment differences must lie in the different degree of regional wage flexibility, \(\alpha_{1,r} \), and/or in the regional amenities, \(\alpha_{0,r} \).

Equation (4) illustrates the assertion of Marston (1985) that regional differences in unemployment may reflect either equilibrium or a disequilibrium situation.\(^8\) If regions differ in amenities, each region would tend towards its own natural rate. Given that amenities change slowly through time, the existence of disparities in unemployment becomes an equilibrium result. In a disequilibrium framework, NAIRUs can be similar across regions, but adjustment processes may evolve differently because of different degrees of flexibility.\(^9\)

Whereas differences across regions in demand-side, supply-side and institutional factors have been extensively considered in the empirical literature (see Elhorst, 2003; Aragon *et al.*, 2003), in the last years, institutional setting focused on wage schemes have been increasingly

\(^8\) Additionally, equation (4) could show some degree of hysteresis so that the natural rate could depend on past unemployment. In this case, adjustment to adverse shocks will differ across regions, and disparities would increase through time. If this is the case, note that the lack of wage flexibility reinforces the disequilibrium approach.

\(^9\) Bande and Karanassou (2011) find however that the concept of a natural rate of unemployment at the regional level may be misleading, since it is based on single equation unemployment models. When a system of labour demand, wage setting and labour force is considered instead, lagged adjustment processes interact with growing variables in the system (a phenomenon labeled as ‘frictional growth’), which adds to the natural rate. Therefore nothing guarantees that in the long run the actual unemployment rate tends toward the natural rate, which does not act as an attractor, and thus serves of little help in the formulation of labour market policies.
considered in studies on regional unemployment disparities (see Pench et al., 1999; Brunello et al., 2001; Basile and De Benedictis, 2004). Since differences in most of the institutions are common between regions, the focus has been placed on the wage-setting mechanism, specifically on how wages respond to regional factors, such as labour productivity and unemployment. This will be analysed in section 3. Before that, we now present evidence on the evolution of regional differences in unemployment rate for the Spanish economy.

2.2 Regional unemployment rate differences in Spain

In Spain, a cursory glance at unemployment rates allows us to appreciate huge differences between regions. Figure 1 reveals the wide differences in unemployment rates across Spanish regions. It shows the average unemployment rate in the three high-unemployment regions (top quintile of the distribution), the three low-unemployment regions (bottom quintile) and the ratio between the rates in the high-unemployment and the low-unemployment regions over time. This figure follows closely the evolution of national unemployment rate over the business cycle: an increase until the mid-eighties; a marked decrease during the expansionary phase between 1986 and 1991; a sharp rise until 1994 (where national unemployment rate attained a peak at 24.1%); a steady reduction between 1994 and 2007; and then an abrupt surge to 1994 levels (see also Table 1).

The average difference between the top and the bottom quintiles has been about 7.5 percentage points (pp.), with the recession periods showing higher values (almost 10 pp.) and the expansionary phases showing lower (the minimum was less than 4 pp. at 2004). This is a first evidence that absolute differences are marked and procyclical. However, when differences are computed in relative terms (i.e. as proportion to the national rate), a countercyclical behaviour is observed. The ratio between the top unemployment regions and the bottom unemployment regions increased during expansionary phases and declined with recessive periods.

10 All the information used here comes from the Eurostat Regio dataset and from the Spanish Labour Force Survey (EPA), elaborated by the Spanish National Statistics Institute, according to the European standard issued by Eurostat. The thorough reform of the EPA undertaken in 2002, consisting of the change of the elevation factors and of the adaptation of the definition of unemployed to that proposed by Eurostat, implied a clear break in the sample that must be born in mind.

11 Both the difference between the maximum value and the minimum value (Figure A1 in the Appendix) and the dispersion (Figure A2 in the Appendix) move parallel to the evolution of the national unemployment rate.

12 See also the ratio between the maximum and the minimum value in Figure A1 and the relative dispersion in Figure A2.
In the series included in Table 1 we show regional unemployment rates at different moments in time from 1983 until 2010, as well as some illustrative indicators. It can be observed that regional differences in the unemployment rate are persistent across Spain. During the last 30 years, Andalusia, Canary Islands and Extremadura have been at the bottom of the regional ranking, with unemployment rates much greater than the average. At the other extreme of the ranking, the Balearic Islands, La Rioja, Aragón and Navarre have always been in the group of regions with the lowest unemployment rates. This indicates that regional differences in Spanish regional unemployment rates exist and persist, contrary to the US, but similar to other EU countries (European Commission, 2000, Baddeley et al., 1998), which may have adverse consequences for those regions occupying the bottom positions in the ranking, reflecting that not all regions follow the same pattern in employment changes.

(Table 1 about here)

A related issue is the dynamics of the distribution of relative regional unemployment rates. Previous evidence (López Bazo et al., 2002) suggested that a polarization process was under way at the provincial level during the 80s and early 90s. However, Bande et al. (2009), for the period between 1980 and 2001 found a weak convergence processes in the regional unemployment rates
along with a stronger polarization effect, that did not affect the whole set of Spanish regions. On
the one hand, two clusters of regions were identified by these authors, with opposite
unemployment behaviors: those regions in the Ebro axis and Balearic Islands showed
unemployment rates below the national average, while the other cluster (Andalusia, Extremadura
and the Canary Islands) showed values 1.5 times greater than this average. On the other hand, a
third group was converging towards the national average. Bande et al. (2010) confirm that this
pattern continued in the second half of the first decade of the 21st century, and that the Great
Recession was inverting the process, with an ongoing process of overall relative unemployment
convergence. Figure 2 clarifies this issue, presenting the estimated kernel density functions for
the relative regional unemployment rates in selected moments of time.

Figure 2

Estimated kernel density functions for the relative regional unemployment rates

Notes: a gaussian kernel function is used to estimate the kernel density, while the bandwidth has been selected using the Silverman option.
The relative unemployment rate is defined as the regional unemployment rate over the national unemployment rate.
Table 1. Relative regional unemployment rate

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Andalucía (AND)</td>
<td>22.41</td>
<td>30.09</td>
<td>28.68</td>
<td>25.53</td>
<td>28.18</td>
<td>34.59</td>
<td>32.35</td>
<td>29.13</td>
<td>24.13</td>
<td>19.68</td>
<td>17.07</td>
<td>12.76</td>
<td>17.83</td>
<td>25.35</td>
<td>27.97</td>
</tr>
<tr>
<td>Aragón (ARA)</td>
<td>13.68</td>
<td>16.00</td>
<td>13.94</td>
<td>9.54</td>
<td>12.31</td>
<td>18.30</td>
<td>15.28</td>
<td>11.37</td>
<td>7.20</td>
<td>5.80</td>
<td>5.62</td>
<td>5.24</td>
<td>7.15</td>
<td>12.82</td>
<td>14.77</td>
</tr>
<tr>
<td>Cantabria (CANT)</td>
<td>12.61</td>
<td>17.71</td>
<td>20.64</td>
<td>16.77</td>
<td>16.65</td>
<td>23.36</td>
<td>23.87</td>
<td>17.79</td>
<td>13.36</td>
<td>10.05</td>
<td>10.54</td>
<td>5.90</td>
<td>7.17</td>
<td>11.99</td>
<td>13.87</td>
</tr>
<tr>
<td>Castilla-León (C-L)</td>
<td>13.56</td>
<td>18.04</td>
<td>17.36</td>
<td>15.39</td>
<td>17.70</td>
<td>21.43</td>
<td>19.90</td>
<td>18.00</td>
<td>13.75</td>
<td>10.48</td>
<td>10.69</td>
<td>7.18</td>
<td>9.51</td>
<td>13.78</td>
<td>15.78</td>
</tr>
<tr>
<td>Murcia (MUR)</td>
<td>16.62</td>
<td>19.64</td>
<td>17.49</td>
<td>15.95</td>
<td>20.97</td>
<td>25.52</td>
<td>23.56</td>
<td>17.28</td>
<td>12.73</td>
<td>11.38</td>
<td>10.67</td>
<td>7.56</td>
<td>12.63</td>
<td>20.73</td>
<td>23.35</td>
</tr>
<tr>
<td>Navarra (NAV)</td>
<td>15.52</td>
<td>18.10</td>
<td>14.41</td>
<td>11.66</td>
<td>11.47</td>
<td>14.62</td>
<td>11.70</td>
<td>10.09</td>
<td>5.65</td>
<td>5.71</td>
<td>5.54</td>
<td>4.76</td>
<td>6.72</td>
<td>10.89</td>
<td>11.85</td>
</tr>
<tr>
<td>Nacional (SPA)</td>
<td>17.33</td>
<td>20.98</td>
<td>19.24</td>
<td>16.24</td>
<td>18.35</td>
<td>24.12</td>
<td>22.08</td>
<td>18.61</td>
<td>13.87</td>
<td>11.48</td>
<td>10.97</td>
<td>8.26</td>
<td>11.34</td>
<td>18.01</td>
<td>20.06</td>
</tr>
</tbody>
</table>

Max-min
Max/min
Dispersión
Disper_rela
q1
q4
Ratio

| Notes: Q4/Q1 stands for the ratio of the average regional unemployment rate in the top quartile over that in the bottom quintile.
Source: Own elaboration from the Spanish National Employment Survey (EPA). |

2.27	2.24	2.63	3.06	2.46	2.37	2.76	2.89	4.27	3.44	3.10	2.74	2.76	2.40	2.72
4.31	4.65	4.76	5.14	5.09	5.11	5.38	5.29	5.20	3.90	3.44	2.40	3.58	4.90	5.37
0.20	0.22	0.25	0.32	0.28	0.21	0.24	0.28	0.37	0.34	0.31	0.29	0.32	0.27	0.27
1.64	1.63	1.53	1.67	1.44	1.44	1.46	1.61	1.64	1.58	1.38	1.67	1.76	1.61	1.54
These estimates confirm previous results. During the economic boom that started in the second half of the 90s until the explosion of the Great Recession, regional unemployment disparities were exacerbated, since the two-mode distribution in 1995 was progressively sharpened, with a low unemployment mode around 0.9 in 2002 and of 0.8 in 2006. The high unemployment mode, on the contrary, moved from 1.45 in 1995 to 1.7 in 2002 and moved back to 1.5 in 2006. However, within the low unemployment group of regions a different behaviour can be found, and an additional mode could be identified at 0.6 in 2002 and 1.0 in 2006 respectively (see Bande et al., 2010 for a detailed account of changes in the distribution of regional unemployment rates throughout the first decade of the century). If the hypothesis of an imitation effect on the wage bargains during expansions were true, we should observe a reversal of the described pattern through the Great Recession. And this is precisely what seems to be happening in Spain. The last panel of Figure 2 shows the kernel density function for the distribution of regional unemployment rates in 2010, pointing at an ongoing process of convergence in regional unemployment rates towards the national average. This result indicates that the process of wage formation is a fundamental element in the explanation of unemployment disparities in the Spanish economy.

In sum, wage imitation policies across regions and industries have made differences in regional wages to be clearly lower than differences in regional productivity (Bande et al., 2008). This has caused a differing behaviour in the creation of employment across regions, which has generated a kind of polarisation in unemployment rates. Against this background, our aim in this paper is to investigate regional wage flexibility in Spain making use of the wage curve as an appropriate measure of wage flexibility.

3.- Wage curves in Spain: regional differences
The wage curve is the term used to describe the negative relationship between the levels of unemployment and wages that arises when these variables are expressed in local terms, reflecting that for two identical individuals, one working in an area of high unemployment and other working in a region with low joblessness, the former gets lower earnings. Since the initial work by Blanchflower and Oswald (1994), many studies have found that this relationship is rather similar across countries and that can be represented by:13

\[w_{ir} = -0.1 u_r + \text{other terms} \]

13 See Nijkamp and Poot (2005), Montuenga and Ramos (2005) and Blanchflower and Oswald (2005) for lists of countries in which wage curves have been found.
where w_r is the log of the wage of an individual living in region r; u_r is the log of the regional unemployment rate and the other terms are control variables for worker and job characteristics. Here, the coefficient -0.1 is the elasticity of wages with respect to unemployment indicating that, for a given region and a given point in time, doubling the unemployment rate implies a decrease of one tenth in wages, *caeteris paribus*.

However, this “empirical law of economics” of a -0.1 elasticity of wages with respect to unemployment, advocated by Blanchflower and Oswald (1994, 2005), is not as uniform as they claim. Several studies have obtained estimated values for this elasticity that differ noticeably across countries. For instance, the unemployment coefficient is not significantly different from 0 in the Nordic countries (Albaek *et al*., 2000 -Denmark, Finland, Iceland, Norway and Sweden-; Brunstad and Dyrstad, 1997 and Barth *et al*., 2002 for Norway). Using a homogenous data set, Montuenga *et al*. (2003) prove that the elasticity varies across some EU countries, ranging from a value of about -0.20 in the UK and France, through to -0.05 in Portugal, with Spain and Italy in the medium range. Values slightly higher have been found for the same countries in Sanz de Galdeano and Turunen (2006). In Central-Continental countries, coefficients are much more reduced, less than -0.05 in absolute values (see Winter-Ebmer, 1996 and Falk and Leoni, 2009 for Austria; Janssens and Konings, 1998, for Belgium; Buettner, 1999, Bellmann and Blien, 2001, Ammermuller *et al*., 2010, Baltagi *et al*., 2009, for Germany; Iara and Traistaru, 2004, for Poland, Hungary and Romania). The disparity increases when developing countries are investigated. No wage curve is found in China (Sabin, 1999; Wu, 2004), Taiwan (van der Meulen Rodgers and Nataraj, 1999), Slovenia and Kyrgyzstan (Blanchflower, 2001), whereas the coefficient is close to -0.2 in the Baltic countries (von Hagen and Traistaru-Siedschlag, 2005) and above, in absolute value, to -0.2 in Estonia and Latvia (Blanchflower, 2001).

In the neoclassical framework, workers would be willing to live in a high unemployment area if they receive some type of reward, according to the compensating differentials theory (Harris and Todaro, 1970), either non-pecuniary (life conditions, amenities, etc…) or monetary. Therefore, one possible reason for living in places with higher unemployment rates can be associated with receiving higher wages. The empirical evidence of the wage curve seems to run against this theory. Considering differences on the time interval solves this apparent contradiction. A positive relationship between wages and the rate of unemployment

14 It should be noted that the bulk of the evidence presented is difficult to compare directly. First, data statistics are specific to each country. Even when analysing the same country, data sources may be different. Secondly, some of the econometric problems discussed later are not dealt with properly in the literature.
(as predicted by the compensating differential theory) is satisfied in the long term whereas the negative relationship (represented by the wage curve) is valid in the short term (Morrison et al., 2006; Johnes, 2007).

On theoretical grounds, the wage curve can be deduced from, first, bargaining models where the existence of frictions (hiring and firing costs) in the labour market is the source of agents' negotiation power, leading to a sharing of the income generated between employers and employees. Thus, in regions with a high rate of unemployment, the workers’ bargaining power is restricted, since there are fewer outside opportunities for a job, resulting in lower negotiated wages. Secondly, in models based on the efficiency wage hypothesis (e.g. Shapiro and Stiglitz 1984, Campbell and Orszag, 1998), unemployment acts as a device that prevents workers from shirking when the cost of monitoring is too high for the employer or quitting. In regions with high unemployment rates, wages can be lower, since incentives to shirk or to quit are reduced by the lower probability of finding a job outside. By contrast, in places where unemployment is low, incentives to shirk and to quit are higher, given the higher probability of finding a new job. Under both theories, the geographical aspects of unemployment have become an important issue when trying to explain wage curves and their spatial dimension, so that the existence of a wage curve has been related with the increasing dispersion in unemployment rates across regions, see García and Montuenga (2003) and Suedekum (2004).

Empirically, the wage curve can be estimated by adding the regional unemployment rate to the typical wage equation

$$w_{irt} = a + f_r + d_t + b X_{irt} + \beta u_{irt} + \epsilon_{irt}$$

where the subindex i denotes the individual, r the region and t the year. X_{irt} is a vector of workers’ personal aspects including, among others, race, marital status, gender, level of education, as well as other variables related to the specific job place, such as working experience, type of contract, occupation, activity, etc. w_{irt} and u_{irt} stand, respectively, for the hourly earnings and the regional unemployment rate (both in logs). Finally, f_r and d_t are, respectively, the fixed regional and time effects. Fixed time effects in (5) take into account the influence of variables which are supposed to be time varying but constant across states. Fixed regional effects are included to capture each region’s structural features, such as local amenities. These fixed regional effects constitute the key element of the wage curve since they capture the permanent features of the environment, so that the unemployment rate is basically affected by the transitory aspects of the relationship between wages and unemployment. When regional fixed effects are not included, the unemployment elasticity captures both the permanent and transitory components of the relationship between wages and unemployment.
rates, allowing for a positive long-term relationship, as the compensating differential theory forecasts.

Our focus is on the coefficient β. A wage curve exists when the estimate of β is negative and statistically significant. The log specification of the unemployment rate is common in the literature. The value of the coefficient β is then interpreted as a measure of the degree of wage flexibility. The greater the value of β, the greater the response of wages to unemployment rate fluctuations, and hence, a higher wage flexibility (or lower wage rigidity). Attaching regional unemployment rates to each individual makes it possible to associate each worker to his/her relevant local labour market.

Some econometric issues must be considered. First, as regards as the plausible endogeneity of unemployment, previous research (García and Montuenga, 2003) has shown that this is not the case in Spain, since unemployment rates are shown to be predetermined. Second, since wages may respond to unemployment through changes in standard rates, overtime rates, or the proportion of overtime to total hours and overtime is typically remunerated at a premium rate, the marginal cost of labour that is independent of hours worked is the standard hourly wage that is paid for the working period (see Hart, 2003). Third, regional prices must be used to compute real wages in order to control for differences in the life costs. Fourth, whereas the dependent variable is expressed in individual terms, unemployment rates are expressed in aggregate terms, leading to a bias known as the “common group effect” (Moulton, 1986, 1990). Finally, and related with the previous one, given that the unemployment rate does not change across individuals, the true number of degrees of freedom of the estimation is not the number of individual observations, but rather the product of the number of regional markets times the number of time periods. Since this dimension may be small in datasets (as it is our own case), measures of the unemployment rates disaggregated by the characteristics of the workers (gender, age, education level) should be used (see also Kennedy and Borland, 2000, and Montuenga et al., 2003, 2006).

4. Empirical results
In this section we summarize our empirical approach and present the main econometric results as regards the estimation of a wage curve at the regional level for Spain. We first start by describing our dataset. Obviously, in order to estimate wage equations we need individual data on wages and on personal and job characteristics. At the same time, the regional dimension of our approach requires a sufficient number of observations in order to achieve
robust econometric results, as many of the properties of the estimators hold only under the assumption of large samples. Our main database is the Wage Structure Survey (WSS). This survey has been conducted by the Spanish Statistics Institute (INE) in 1995, 2002 and 2006, and comprises a large number of observations, with regional disaggregation at the NUTS II level. It does not represent the whole set of employed workers, since only wage earners are included in the sample.

The reference population in the survey was originally formed by employees working in establishments with at least 10 workers involved in any activity except agriculture, farming, fishing, public administration, defence, social security, private households and extra-territorial organisations and bodies. This initial design of the survey has been later modified in the subsequent waves. For instance, the 2002 survey included additional economic activities, as for instance education, health and social work or other community, social and personal service activities. In the 2006 survey, firms of between 1 and 9 workers were also included.

The main advantage of this statistical source is that it has a large size and provides detailed information about wage-earners and about the establishments where they are working. Each observation is a matched employer-employee data providing a set of information related to the characteristics of the individual and job and workplace information.

The estimation of the wage curve (5) involves relating the individual wage with the appropriate unemployment rate, controlling for as many personal and job characteristics as possible. On principle, the more precisely the unemployment rate is defined, the better the wage elasticity to local unemployment is computed. Ideally, an individual unemployment rate would proxy the risk in joblessness for a particular worker. In practice, there are many difficulties in achieving highly disaggregated unemployment rates. In our case, the most reliable statistical source for the unemployment rate, i.e., the Labour Force Survey, has the disadvantage of providing non-significant figures of active and unemployed population when the level of disaggregation is high.

Initially we attempted to calculate the unemployment rates at the regional level by sex, age (4 groups) and education level (4 levels) but found ourselves with many empty or unreliable figures. Therefore, we had to reduce the level of disaggregation, and computed unemployment rates at the regional level by sex and educational groups only. However, as indicated above, this introduced another problem, since the estimation of an equation as (5) involves variables with different levels of aggregation, which may lead to biased estimates if all of the workers in a group share the same unemployment rate. More precisely, estimates of
the more aggregated variable (the unemployment rate) tend to exhibit lower standard errors. We also firstly explored the possibility of estimating the wage curve for each year and region, and compare the slope coefficients for the unemployment rate, but found insignificant coefficients, with wrong sings in many cases.

As a consequence, we adopted a different approach, and pooled the information gathered in the three waves of the survey into a unique dataset. This implied the need to homogenise the different variables, in order to make them comparable.15 Specifically, we restricted our analysis to those sectors reported in the 1995 survey, and dropped from the sample variables with different levels of information which were not possible to reconcile (for instance, type of property or type of market towards which production is directed). Moreover, we had to drop from the 2006 survey those observations corresponding to firms of between 1 and 9 workers. Thus, we ended with a sample of 777,789 observations. Unemployment rates are disaggregated by region, sex and educational level (four levels). Additionally, in order to make the computed wages comparable we had to deflate them with the regional consumer price index provided by the INE.16 Finally, the hourly wage was computed without taking into account extraordinary payments, as discussed in the previous section. The Appendix provides the definitions of the variables included in the estimated wage equation.

Given the results presented in Section 2, we concluded that Spanish regions form groups (or clusters) as regards the behaviour of the unemployment rate and hypothesised that this different behaviour could be explained by different degrees of sensitivities of wages to the unemployment rate, i.e., different levels of wage flexibility. Since the estimation of the wage curve allows for the identification of such elasticity, following Livanos (2010) we explore this line next. Thus, we split our sample into three groups of regions: first, those with high unemployment rate (Group H), formed by Andalusia, Extremadura and the Canary Islands; second, a group formed by Aragon, Balearic Islands, Navarre, Basque Country and La Rioja, which exhibit low unemployment rates (Group L). The rest of the 17 Spanish regions are regarded as regions with medium unemployment rates (Group M).

Equation (5) was therefore estimated by OLS for the whole sample and for each group, including regional and time fixed effects, as well as all of the variables described in the Appendix and which account for the main personal and job characteristics. For brevity we

15 Note that despite the fact that the WSS provides data for three waves it is not a panel, since the surveyed firms are not necessarily the same, neither are the workers included in the sample.

16 Given the change in the base year of the CPI in 2002 we had to use the regional CPI increase since 1995 provided by the INE. Therefore, 1995 deflator takes value 1, and the values for 2002 and 2006 were calculated accordingly, and thus nominal wages could be deflated.
only report the results obtained for the unemployment rate coefficient, but the full results of each estimation are available upon request. Table 2 summarises the main results.

Table 2

<table>
<thead>
<tr>
<th>OLS estimation of the wage equation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>All Regions</td>
</tr>
<tr>
<td>β</td>
</tr>
<tr>
<td>t-statistic</td>
</tr>
<tr>
<td>Nº of observations</td>
</tr>
<tr>
<td>Nº of clusters</td>
</tr>
</tbody>
</table>

Notes: t-statistic based on robust standard errors. Nº of clusters refers to the number of different unemployment rates within each group. See text for definition of Groups, and Appendix for other variables included in the estimated model. * indicates 95% significance.

From Table 2 it can be seen that the wage elasticity to unemployment at the aggregate level is -0.08, not statistically different from neither the standard value of -0.1 found in the literature (Blanchflower and Oswald, 1994, 2005) nor the “mode” value of, -0.07 reported by Nijkamp and Poot (2005) in their meta-analytic study, once publication bias is dealt with. When disaggregating in the three set of regions to take into account that unemployment rates are quite different across regions, we obtain very interesting results, summarised in the last three columns of Table 2. Differences in the estimated coefficients are not very large, but statistically significant between the three groups. Specifically, in regions with unemployment rates close to national average (Group M), the unemployment elasticity is almost the “typical” -0.10 (estimated coefficient of -0.0992, not statistically different from -0.1). However the estimates for the other two group are dramatically different. Thus, the group of high unemployment (Group H) exhibit a much lower degree of wage elasticity (-0.0602) while the group of low unemployment (Group L) almost doubles this figure, with an estimated elasticity of -0.1134. These results indicate that high unemployment is related to low wage elasticities, while low unemployment is related to higher sensitivities of wages to local labour market conditions. Consequently, if wage flexibility is a mechanism that allows

17 Standard Wald tests strongly reject the null that the slope coefficient for the unemployment rate is similar across the three models at the 1% confidence level. The F(2, 777719) statistic is 1127.72, with a p-value of 0.000. We therefore conclude that the estimated slope coefficients for the three models are statistically different.
for absorbing external shocks without largely affecting employment, results seem to indicate that regions which suffer from larger unemployment rates exhibit lower wage flexibility.

5 Conclusions
The advent of external shocks to economies has direct impact on their labour markets. The existing literature has achieved some consensus in claiming that differences in the performance of labour markets across areas (countries, states, regions, etc.) are strongly driven by the interaction between such shocks and the institutions of the corresponding labour market. Whereas differences across countries in institutions are evident (Layard and Nickell, 1999, Eichhorst et al., 2008) only a few of them can be thought to have an impact at the regional level. Considering that most of the institutions (unemployment benefits, tax wedge, minimum wages, etc.) as well as monetary and fiscal policies are common to all regions within a country (at least in the main European countries), only some characteristics of the labour market may give rise to differences within countries.

Leaving aside regional amenities such as climate, orography, etc., which are initial endowments difficult to modify over time, differences in supply-side, demand-side and institutional factors may play an important role in shaping differences in labour market performance (usually reflected through the unemployment rate).

Human capital accumulation; the structure by age, sex or nationality as well as characteristics related to sector of activity, the type of contracts or firm size, etc., which form part of the the demand and supply sides of employment, influence the response of workers to external shocks through changes in labour participation, in firm allocation, in workplace (migration) and wage flexibility. Individual and job characteristics provided in statistical datasets allow for controlling all these factors, while regional fixed effects can account for amenities. However, the role that institutions play in labour markets must be explicitly addressed.

In Spain, it has been shown that, among those three factors, neither migration (Jimeno and Bentolila, 1998) neither labour participation nor firm allocation (López Bazo et al., 2002) have been especially effective in absorbing negative shocks. Only wage flexibility has seemed to play some (limited) role in absorbing those shocks (García and Montuenga, 2003, Jimeno and Bentolila, 1998). Our aim has been to study the role of regional wage flexibility in Spain using wage curves. The fact that most of institutions are common within a country, leads us to consider wage flexibility, apart from regional amenities, as a relevant force in driving differences in regional unemployment rates.
Whereas an “empirical law of economics” has been claimed to reveal that unemployment elasticity is about -0.1 across countries, periods of time and data bases, we have provided some review of literature in which results depart from this “empirical law”. Accordingly, we have proceeded to estimate a national wage curve, but also regional wage curves to assess whether wage flexibility differs across regions or set of regions.

Using data for three moments of time, 1995, 2002 and 2006, to make use of the most extensive data base for wages and individual and job characteristics, the Wage Structure Survey, we have estimated wage curves considering three set of regions: those with persistently higher unemployment rates than the national average; those with persistently lower rates, and those with figures around the national rate. To do this, we disaggregated unemployment rates as much as possible distinguishing between regions, but also across gender and educational level.

Our hypothesis was very simple: if wage flexibility is a mechanism to absorb external shocks in order to accommodate employment variations, those regions with low wage flexibility should exhibit, ceteris paribus, higher unemployment rates. The estimated results confirm such hypothesis.

In this context, spurring flexibility in regional labour markets, especially those with severe rigidities, seems crucial and unavoidable. The forthcoming reform of the legal framework for wage bargaining (to be presumable passed by the Spanish Government in June, 2011) seems to go along these lines, since it tries to foster firm-level agreements with respect to province-level ones, but not overcoming the current hierarchy of regional and industry nation-wide agreements. In other words, in case of a contradiction between a province-level and a firm-level agreement, the latter will prevail. This will imply that wage conditions could be settled taking into account the individual characteristics of the involved workers and firms. This, in turn, would incentivize workers and firms to bargain at the firm or at the industry level. The former type of agreements would account for the actual economic conditions within the firms, the latter for the overall aggregate economic performance. In both cases, wage flexibility would increase.

Nevertheless, fostering firm-level agreements may involve some problems with respect to their implementation, especially in those economies where micro-firms are the rule, as is the case of Spain. The reform could not provide satisfactory arrangements for the agreements in this type of firms, where the bargaining power is unequally distributed, and which could give rise to non desirable results. In fact, this is the main challenge: increasing the degree of labour market flexibility but maintaining adequate working conditions. In other words, the challenge
is to eliminate some rigidities to facilitate employment growth, not to worsen the working conditions of the currently employed workers, and simultaneously to increase firms profits by cutting wage costs. Moreover, Bande et al. (2010) find the existence of a wage premium in the firm-level agreements, independent of the personal and job characteristics, which indicates that the wage imitation effects found at other levels of bargaining are also present in these type of agreements. Fostering firm-level bargaining without taking into account this fact may, actually, impose higher rigidity to firms, and therefore provoke unexpected results. Therefore, at this stage some creativeness is required. Our proposal is to maintain province-level agreements, with a modification of the payment structure in them. Specifically we propose an increase in the variable part of the pay, which should be set in the province agreements based on variables such as firm size, productivity, productive investments, evolution of profits, local economic growth, price of the product in the relevant markets, etc. Based on their individual circumstances, firms and workers could adhere or not to these agreements in the firm-level agreement. This setup would increase the degree of wage flexibility and allow for a greater employment growth when the business cycle recovers.

References

Appendix

Figure A1

Figure A2
Table A1. List of included variables in the wage equation regression. Definitions.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ln)</td>
<td>Log of the Unemployment rate</td>
</tr>
<tr>
<td>female</td>
<td>=1 if observation is female</td>
</tr>
</tbody>
</table>
| Ed1-Ed4 | Education level
- Ed1: primary
- Ed2: secondary I
- Ed3: secondary II
- Ed4: Higher |
| Exp1-Exp5 | Experience: Age-education-6-years of tenure
- Exp1: Less than 4 years
- Exp2: 5 to 9 years
- Exp3: 10 to 15 years
- Exp4: 15 to 20 years
- Exp5: more than 20 years |
| Expsqr | Experience squared |
| Tenure1-Tenure4 | Tenure:
- Tenure1: less than a year
- Tenure 2: 1 to 4 years
- Tenure 3: 5 to 9 years
- Tenure 4: more than 10 years |
| Ocup1-Ocup9 | Occupation level:
- Ocup1: Legislators, senior officials and managers
- Ocup2: Professionals
- Ocup3: Technicians and associate professionals
- Ocup4: Clerks
- Ocup5: Service workers and shop and market sales workers
- Ocup6: Skilled workers
- Ocup7: Plant and machine operators and assemblers
- Ocup8: Elementary occupations (services)
- Ocup9: Elementary occupations (other activities) |
| Age1-Age3 | Age group
- Age1: 25 to 54
- Age2: less than 25
- Age3: more than 54 |
| Contract1-Contract2 | Type of contract
- Contract1: permanent
- Contract2: fixed-term |
| Wktime-Wktime2 | Working time status
- Wktime1: full time job
- Wktime2: part-time job |
| Size1-Size3 | Size of the firm (number of workers)
- Size1: 10 to 49 workers
- Size 2: 50 to 99 workers
- Size 3: more than 100 workers |
| Wagr1-Wagr3 | Type of wage agreement:
- Wagr1: national agreement
- Wagr2: regional agreement
- Wagr3: firm-level agreement |
| Sector1-Sector22 | Sector of economic activity
- Sector1: Mining and quarrying
- Sector2: Manufacture of food products, beverages and tobacco
- Sector3: Manufacture of textiles and textile products
- Sector4: Manufacture of leather and leather products
- Sector5: Manufacture of wood and wood products
- Sector6: Manufacture of pulp, paper and paper products; publishing and printing
- Sector7: Manufacture of coke, refined petroleum products and nuclear fuel
- Sector8: Manufacture of chemicals, chemical products and man-made fibres
- Sector 9: Manufacture of rubber and plastic products
- Sector10: Manufacture of other non-metallic mineral products
- Sector11: Manufacture of basic metals and fabricated metal products
- Sector12: Manufacture of machinery and equipment n.e.c.
- Sector13: Manufacture of electrical and optical equipment
- Sector14: Manufacture of transport equipment
- Sector15: Manufacturing n.e.c.
- Sector16: Electricity, gas and water supply
- Sector17: Construction
- Sector18: Wholesale and retail trade; repair of motor vehicles. motorcycles and personal and household goods
- Sector 19: Hotels and restaurants
- Sector20: Transport, storage and communication
- Sector21: Financial intermediation
- Sector22: Real estate, renting and business activities |